
Cloudera Fast Forward

Interpretability
FF06 · April 2020 Re-release

Interpretability report cover

https://www.cloudera.com/products/fast-forward-labs-research.html

This is an applied research report by Cloudera Fast Forward. We write reports about
emerging technologies. Accompanying each report are working prototypes that
exhibit the capabilities of the algorithm and offer detailed technical advice on its
practical application. Read our full report on interpretability below or download the
PDF, and view our prototype here.

1. Introduction
2. The Power of Interpretability

What Is Interpretability?
Enhancing Trust
Satisfying Regulations
Explaining Decisions
Improving the Model
Accuracy and Interpretability

3. The Challenge of Interpretability

Why Are Some Models Uninterpretable?
White-box Models
Black-box Interpretability

4. Prototype

Customer Churn
Applying LIME
Product: Refractor

5. Landscape

Interviews
Data Science Platforms

6. Ethics and Regulations

Discrimination
Safety
Negligence and Codes of Conduct

7. Future

Near Future
Longer Term
Interpretability Sci-Fi: The Definition of Success

8. Conclusion

https://www.cloudera.com/products/fast-forward-labs-research.html

Our society is increasingly dependent on intelligent machines. Algorithms govern
everything from which e-mails reach our inboxes to whether we are approved for
credit to whom we get the opportunity to date – and their impact on our
experience of the world is growing.

This rise in the use of algorithms coincides with a surge in the capabilities of black-
box techniques, or algorithms whose inner workings cannot easily be explained.
The question of interpretability has been important in applied machine learning for
many years, but as black-box techniques like deep learning grow in popularity, it’s
becoming an urgent concern. These techniques offer breakthrough capabilities in
analyzing and even generating rich media and text data. These systems are so
effective in part because they abstract out the need for manual feature
engineering. This allows for automated systems that are able to do completely new
things, but are unable to easily explain how they do those things.

Introduction
CHAPTER 1

FIGURE 1.1 As algorithmic systems become more prevalent, the need to

understand them grows.

Interpretability is relevant to anyone who designs systems using machine learning,
from engineers and data scientists to business leaders and executives who are
considering new product opportunities. It allows you to better understand your
machine learning systems and thus generate more useful results. It helps to
explain algorithmic predictions and therefore change real-world outcomes. It is
necessary in regulated industries where you have to prove that business practices
are not dangerous or discriminatory. Further, interpretability is a key tool in
understanding bias and accountability in the increasingly automated systems we
are deploying throughout society.

In this report, we explore two areas of progress in interpretability: systems
designed to be perfectly interpretable, or white-box algorithms, and emerging
research on approaches for inspecting black-box algorithms.

FIGURE 1.2 With tools that aid interpretability, we can gain insight into

black-box systems.

If a model makes correct decisions, should we care how they are made? More
often than not, the answer is a resounding yes. This chapter explains why.

What Is Interpretability?
From the point of view of a business deploying machine learning in a process or
product, there are three important kinds of interpretability:

Global – Do you understand the model as a whole to the extent required to
trust it (or to convince someone else that it can be trusted)?
Local – Can you explain the reason for a particular decision?
Proxy – When the model is a perfect proxy for the system you are interested
in, can you say how the model works, and thus learn about how the real system
works?

The Power of Interpretability
CHAPTER 2

FIGURE 2.1 Global interpretability shows feature importance for the

model’s prediction at a global level. Local interpretability shows feature

importance for the model’s prediction at a record-by-record level.

When one or more of these conditions holds, it makes our use of data safer and
opens the door to new kinds of products.

Enhancing Trust
Data scientists have a well-established protocol to measure the performance of a
model: validation. They train a model with perhaps 80% of their training data, then
measure its performance on the remainder. By assessing the model using data it
has never seen, they reduce the risk that a powerful model with a lot of flexibility
will simply memorize the training data.

FIGURE 2.2 If you trust a model, interpretability can provide you with

concrete actions to pursue.

FIGURE 2.3 Model validation can prevent overfitting.

This possibility, known as overfitting, is a concern because the model will one day
be deployed in the wild. In this environment, by definition, it cannot have seen the
data before. An overfitted model does not capture fundamental, general trends in
data and will perform poorly in the real world. Validation during training diminishes
this risk. It is an absolute minimum requirement for building a trustworthy model.

But memorization or overfitting is not the only danger that lurks during training. If
the training data has patterns that are not present in real-world data, an apparently
good model will detect these patterns and learn to depend on them, and then
perform poorly when deployed.

Some differences between training and real-world data can be very obvious. For
example, if you train a self-driving car on public roads in a country where people
drive on the left, and then deploy that car in the United States, you’re asking for
trouble.

But sometimes subtler discrepancies can exist in the training data without your
knowledge. A memorable example taken from a 2015 paper makes this point

clearly.[1] Doctors and statisticians trained a model to predict the “probability of
death” of patients suffering from pneumonia. The goal was to identify high-risk
patients who should be admitted to hospital, and low-risk patients for outpatient
treatment. With enough data, the conceit of machine learning is that it is able to
identify patterns that doctors might miss, or that might be glossed over by crude
protocols for hospital triage.

When the researchers analyzed the model (using some of the techniques we
discuss in this report), they realized that the model wanted to treat patients with
asthma as low-risk outpatients. Of course, the model was wrong: people with

FIGURE 2.4 Validation does not help when training data and real-world data

are too different.

asthma are at high risk if they catch pneumonia and should be admitted to the
intensive care unit. In fact, they often are, and it was this that caused a problem in
the training data. Asthma patients receive excellent care when they have
pneumonia, so their prognosis is better than average.

A model that captures this will perform well by the standard training metrics of
accuracy, precision, and recall, but it would be deadly if deployed in the real world.
This is an example of leakage: the training data includes a feature that should not
be used to make predictions in this way. In this case, the model depended on a
flawed assumption about the reason for the correlation between asthma and
pneumonia survival.

It is obviously essential to be confident that you haven’t embedded bugs like this
into a statistical model if it is to be used to make life-and-death medical decisions.
But it’s also acutely important in any commercial setting. At a minimum, we need to
understand how a model depends on its inputs in order to verify that this matches
our high-level expectations. These perhaps come from domain experts, previous
models that have worked well, or legal requirements. If we can’t do this, then we
can’t be confident that it will behave correctly when applied on data that was not in
the training or validation set. If we can, then we don’t just get a feeling of
confidence: we gain the power to explain decisions to customers, to choose
between models, and to satisfy regulators.

FIGURE 2.5 Models built from training data can lack context for certain

relationships.

This trust is particularly important in machine learning precisely because it is a new
technology. Rightly or wrongly, people tend to distrust novel things. Machine
learning will only earn the trust of consumers, regulators, and society if we know
and communicate how it works.

Satisfying Regulations
In many industries and jurisdictions, the application of machine learning (or
algorithmic decision-making) is regulated. This report does not offer legal advice.
To the extent that we discuss these regulations in any specific detail, we do so in
Chapter 6 - Ethics and Regulations. We bring them up here for two reasons.

First, if these regulations apply, they almost always imply an absolute requirement
that you build interpretable models. That is because the goal of these regulations
is often to prevent the application of dangerous or discriminatory models. For
example, you may be required to prove you haven’t overfitted. An overfitted model
won’t work in the real world, and deploying one may hurt more than just your own
bottom line. You may be required to prove that dangerous predictive features
haven’t leaked in, as in the pneumonia treatment model that sent asthma patients
home. And you may be required to show that your model is not discriminatory, as is
the case if a model encourages a bank to lend to borrowers of a particular race
more often.

In a regulated environment, it is insufficient to show that these problems were not
present in your training data. You must also be able to explain the model derived
from this training data, to show that they can never occur in the model either. This
is only possible if the model is interpretable.

Second, even in industries where regulations don’t apply, the regulations set a
standard for interpretability. They formalize and extend the question of whether
the model builder trusts the model to behave as desired. In some cases they also
emphasize the possibility of discrimination, which is something all data scientists
should bear in mind. A model that perfectly captures the real world with 100%
accuracy might seem desirable, but training data often embeds society’s biases. It
may be unethical, if not illegal, to deploy a model that captures and recapitulates
these biases. Interpretability allows you to reason about whether your model
embeds biases before you go ahead and apply it at scale.

Explaining Decisions
Local interpretability – the ability to explain individual decisions – opens up new
analyses and features, and even new products. The ability to answer the question
“Why has the model made this decision?” is a superpower that raises the
possibility of taking an action to change the model’s decision. Let’s consider some
examples of what you can do with that capability.

A model of customer churn tells you how likely a customer is to leave. A locally
interpretable model – that is, one in which you can explain a particular prediction –
offers an answer to the question of why this customer is going to leave. This allows
you to understand your customer’s needs and your product’s limitations. It even
raises the possibility of taking a well-chosen action to reduce the probability of
churn. This problem is the focus of our prototype.

A model that predicts hardware failure in an engine or on a server is of course
extremely useful. You can send an engineer out to inspect an appliance that is
predicted to fail. But if the model is locally interpretable, then you can not only
warn that a problem exists: you can potentially solve the problem, either remotely
or by giving the engineer the reason, saving them time in the field.

A model that predicts loan repayment (or credit rating) is not only useful to the
lender, it is of enormous interest to the borrower. But showing borrowers a credit
rating number on its own is of limited use if they want to know what they need to

do to improve it. The consumer app Credit Karma[2] allows its users to figure this
out for themselves using a brute force method similar to the new algorithm that we
use in this report’s prototype (see perturbation).

Interpretable models also tend to be more user-friendly. For example, the APGAR
score used at childbirth gives an integer score out of 10. The higher the number,

FIGURE 2.6 Local interpretability means you can explain a model’s

predictions and even suggest actions.

the healthier the newborn baby. The score is comprised of three numbers,
measured by eye and combined by mental calculation. This heuristic is not
machine learning, but it is algorithmic decision-making. The simplicity of the
APGAR score means that, in a fast-moving environment, the obstetrician or
midwife trusts its outputs and can reason about the problem with the inputs in
their head: the ultimate in usability. As we discuss below in the Accuaracy and
Interpretability section, this simplicity comes at a cost: the model is less accurate
than a huge neural network would be. But it can often be worth trading a little
accuracy for interpretability, even in contexts less extreme than hospitals.

Improving the Model
An uninterpretable model suffers from the performance and regulatory risks
discussed earlier (see Enhancing Trust, and Satisfying Regulations above), and
closes the door on products that take advantage of explanations (see the previous
section, Explaining Decisions). It’s also much harder to improve.

Debugging or incrementally improving an uninterpretable black-box model is often
a matter of trial and error. Your only option is to run through a list of ideas and
conduct experiments to see if they improve things. If the model is interpretable,
however, you can easily spot glaring problems or construct a kind of theory about
how it works. The problems can be fixed, and the theory narrows down the

FIGURE 2.7 The APGAR score, used in evaluating the health of infants,

shows how a simple model can inspire confidence because its operations are

understandable.

possibilities for improvements. This means experiments are driven by hypotheses

rather than trial and error, which makes improvements quicker.[3]

A striking example of debugging is given in the paper introducing Local

Interpretable Model-agnostic Explanations (LIME),[4] the black-box interpretability
technique we use in this report’s prototype. In that paper, the authors describe a
convolutional neural network image classification model able to distinguish
between images of wolves and Husky dogs with high accuracy. LIME’s ability to
“explain” individual classifications makes it obvious that the classifier has
incorrectly learned to identify not wolves and Husky dogs, but snow in the
background of the image, which was more common in the training images of
wolves.

Accuracy and Interpretability
So, why not simply use interpretable models? The problem is that there is a
fundamental tension between accuracy and interpretability. The more interpretable
a model is, generally speaking, the less accurate it is. That’s because interpretable
models are simple, and simple models lack the flexibility to capture complex ideas.
Meanwhile, the most accurate machine learning models are the least interpretable.

This report is about exciting recent developments that resolve this tension. In the
last few years, “white-box” models have been developed that are interpretable,
but also sacrifice minimal accuracy. Separately, model-agnostic approaches that
provide tools to peer inside accurate but previously uninterpretable “black-box”

FIGURE 2.8 An explanation or interpretation of a model can reveal major

problems, such as in this image classifier, which was trained to

distinguish between wolves and Husky dogs but is using the snow in the

background to tell the difference. Figure and example from the LIME paper.

https://arxiv.org/abs/1602.04938

models have been devised. The following chapters discuss and illustrate these
developments.

FIGURE 2.9 Choosing a model often involves a trade-off between

interpretability and accuracy. This report is about breaking out of this

trade-off.

In the previous chapter we saw the power of interpretability to enhance trust,
satisfy regulations, offer explanations to users, and improve models. But we also
saw that there is a fundamental tension between these goals and a model’s ability
to get decisions right. Traditionally, you can have an interpretable model or you can
have an accurate model, but you can’t have both.

In this chapter we’ll first explain the technical reasons for this tension between
interpretability and accuracy. We’ll then look at two ways to have your cake and eat
it. We’ll take a tour of a handful of new “white-box” modeling techniques which
are extremely interpretable by construction, but retain accuracy. We’ll then
introduce the idea that is the technical focus of the report: interpretation of black-

box models by perturbation and, in particular, LIME.[5]

Why Are Some Models
Uninterpretable?

The Challenge of
Interpretability

CHAPTER 3

FIGURE 3.1 How do we get a model that is both highly interpretable and

highly accurate?

What is it about a model that makes it uninterpretable? Let’s first look at the gold
standard of interpretability – linear models – in the context of a classification
problem (the difficulties with regression models are not qualitatively different).
Suppose we’re classifying borrowers as likely to repay or not. For each applicant
we will have access to two pieces of information: their annual income, and the
amount they want to borrow. For a training sample we also have the outcome. If
we were to plot the training data, we might see something like this:

At a high level, this training data shows that people who repay tend to earn a lot
and borrow a little. But the details are important. You can draw a straight line on
this chart that separates the repayers and non-repayers. You can then build an
accurate model by simply asking the question, “Is the applicant above or below
the line?” Formally, this is a linear model; i.e., one in which the predicted

repayment probability is a linear function of income and loan amount.[6] In other
words:

Probability of repayment = A × income + B × loan amount

where the coefficients A and B are two numbers.

Such a model is interpretable. A is just a number, and not a function of any other
number, so we can easily check whether it is positive. If it is, we can know with
certainty that repayment probability increases with income in our model. This
directional behavior probably matches the expectations of domain experts, which
is reassuring to us and to regulators. The structure of the equation means that this
trend will always be true. It’s mathematically impossible for some obscure
combination of income and loan amount to imply that repayment probability

FIGURE 3.2 Linear models are easy to understand and explain.

decreases with income. That mathematical certainty means we can be confident
that there is no hidden behavior lurking in the model. Our trust in the model is
high. And we can use the numbers A and B to tell a borrower why we think they are
unlikely to repay in precise but plain words (e.g., “Given your income, you are
asking to borrow $1,000 too much.”).

Let’s look at a tougher problem. Suppose we plot the longitude and latitude of
temperature sensors in a field, and mark with a check or cross whether the yield of
corn was high or low:

FIGURE 3.3 Given a new data point, we can explain why it is classified the

way it is.

As you can see, there is no way to draw a straight line that separates the high-yield
and low-yield areas of this field. That means it will be impossible to build an
accurate and maximally interpretable linear model solely in terms of latitude and
longitude.

The obvious thing to do in this particular case would be to “engineer” a feature
that measured distance from the center of the field (which is a function of both
longitude and latitude). It would then be simple to build a model in terms of that
single derived feature. Feature engineering, however, is time-consuming and can
require domain expertise. Let’s suppose we didn’t have the time or expertise. In
that case we might graduate from a linear model to a Support Vector Machine
(SVM).

An SVM essentially automates the process of engineering our “distance from the
center of the field” metric. It does this by distorting the 2D surface on which the
points in the previous figure sit into three or more dimensions, until it is possible
to separate the high- and low-yield areas of the field with a plane.

FIGURE 3.4 Many problems are not linearly separable.

This model will be accurate, but the distortion of the inputs means that it no longer
operates in terms of our raw input features. We cannot write down a simple
equation like our loan repayment equation that allows us to say with confidence
exactly how the model responds to changes in its inputs in all parts of the field.
There is an equation, but it’s longer and more complicated. It has therefore
become harder to give a simple explanation of why an area is predicted to have
high or low yield. If a farmer wants to know whether moving to the west will
increase yield, we have to answer that it depends on how far north you are. Our
model’s internal structure is a step removed from the relatively intuitive raw input.

FIGURE 3.5 The classification for the nonlinear crop data.

If we take one more step up in problem and model complexity, the internal
structure of the model gets still more removed from the input. A neural network
used to classify images does an exponentially large number of transformations
similar to but more complex than the single one performed by an SVM. The
equation it encodes will not only be very long, but almost impossible to reason
about with confidence.

FIGURE 3.6 There is no longer a simple explanation for why a data point is

classified the way it is.

A random forest model is often used where the problem is hard and the main
concern is accuracy. It is an ensemble, which means that it is in a sense a
combination of many models. Although the constituent models are simple, they
combine in a way that makes it extremely difficult to summarize the global model
concisely or to offer an explanation for a decision that is locally true. It is all but
impossible to rule out the possibility that the model will exhibit nonsensical or
dangerous behavior in situations not present in the training data.

White-box Models
The least interpretable models, such as neural networks, are free to choose from
an almost infinite menu of transformations of the input features. This allows them
to divide up the classification space even if it is not linearly separable. New white-
box models have a smaller menu of transformations to choose from. The menu
offers a big boost in freedom to classify with accuracy, but is carefully chosen with
interpretability in mind too. Generally speaking, this means that the model can be
visualized or is sparse. Visualization is one of the most powerful ways of
immediately grasping how a model works. If it is not possible, then the model is
much harder to interpret. Models that are sparse, meanwhile, are mathematically
simple in a way that raises the possibility that they can be written down as a set of
simple rules.

FIGURE 3.7 More complex models create a space that is even more difficult

to explain.

GAMs
Generalized additive models (GAMs) are a great example of this carefully
controlled increase in model flexibility. As we saw earlier, a linear classification
model assumes that the probability a given piece of data belongs to one class
rather than another is of the form:

Ax + By + Cz

where the coefficients A, B, and C are just constant numbers, and x, y, and z are
the input features. A GAM allows models of the form:

f(x) + g(y) + h(z)

where f and g are functions. This model is “generalized” because the constant
coefficients have been replaced with functions – in a sense, the constant
coefficients are allowed to vary, which gives the model more flexibility. But it is
“additive” because the way in which f(x), g(y), and h(z) are combined is
constrained, which means the flexibility is not total. In particular, the functions f,
g, and h are each functions of one of the features only, and the terms f(x), g(y),
and h(z) must be combined by simple addition.

This careful loosening of the constraints of linear models allows higher accuracy,
but retains the ability to construct partial dependence plots. These are simply
graphs of f(x), g(y), and h(z) that allow us to visualize the behavior of the
model. These graphs can be examined to ensure that there are no dangerous
biases lurking in the model or, if necessary, to demonstrate to a regulator that a

model responds monotonically to a particular feature.[7]

FIGURE 3.8 White-box models are highly interpretable. Recent innovation is

focused on increasing their accuracy.

GA^2^2Ms extend GAMs by allowing pairwise interacti^ons, or models of the form:

f(x) + g(y) + h(z) + p(xy) + q(yz)

That is, they allow a tightly constrained version of the kind of feature engineering
we saw in the field yield example earlier. There is in principle nothing to stop us
introducing a model with another term, r(xyz), but GA^2^Ms stop here for a very
good reason: you can make a partial dependence plot of p(xy) by drawing a
heatmap, but it is extremely difficult to make a partial dependence plot of three
variables. It is the partial dependence plots that give the model its interpretability.

We’ve described a situation with just three features, x, y, and z. But it’s more
common to have many more features. This raises the possibility of exponentially
many pairwise terms. For example, with 50 features there are over a thousand
possible pairwise terms. Trying to inspect all these plots would diminish
interpretability rather than enhancing it. For this reason, GA^2^Ms include only the

FIGURE 3.9 Partial dependence plots let you see the relationship between

the prediction and key features.

FIGURE 3.10 Partial dependence plots with pairwise interactions.

k pairwise terms that most improve accuracy, where k is a small number

determined like any other hyperparameter.[8]

Rule Lists
Rule lists are predictive models that learn simple flow charts from training data.
The models are made up of simple if...then...else rules that partition the
input data. These rules are the building blocks of rule lists. For example, it’s
possible to predict survival of passengers on the Titanic using a rule list like this:

Rule lists are special cases of decision trees, where all the leaves are on the same
side of the tree. As such, they are highly interpretable.

Bayesian rule lists (BRLs)[9] and falling rule lists (FRLs)[10] are recent instantiations
of this general approach. Given a catalog of rules learned from data, BRLs use a
generative model to select a smaller subset of highly probable rules that best
describe the data the rules were learned from. In the case of FRLs, the model is
structured so that the selected rules are ordered by importance, which allows
users to more easily identify the important characteristics.

Rule list methods are a good fit for categorical data. Numerical data can be
discretized, but if the statistical relationships among input attributes are affected
by discretization, then the decision rules learned are likely to be distorted.

SLIMs
The APGAR score for newborn infants (see Explaining Decisions) is calculated by
assigning scores of 0, 1, or 2 to five attributes of the baby and adding them up:

FIGURE 3.11 An example rule list predicting the survival of passengers on

the Titanic.

APGAR = appearance + pulse + grimace + activity + respiration

As we discussed, the fact that this score can be calculated quickly and reasoned
about easily is an important feature. Scores like this are in widespread use in
clinical medicine. But this extreme simplicity necessarily comes at the expense of
accuracy.

In the same way GA^2^Ms use a tightly controlled freeing up of a linear classifier

to increase accuracy, Supersparse Linear Integer Models (SLIMs)[11] make a small
change to scoring systems to increase their accuracy. That change is to permit each
attribute to be multiplied by an integer coefficient. With this additional freedom,
the APGAR score might become:

APGAR = 5 appearance + 3 pulse + 2 grimace + 7 activity + 8 respira

A score like this is almost as easy to work with as the original APGAR score, and
potentially hugely more accurate. The challenge is figuring out how to choose the
numbers. SLIMs cast this problem as a supervised machine learning problem and
use the tools of integer programming to ensure the coefficients are round
numbers.

Black-box Interpretability
If you won’t or can’t change your model, or you didn’t make it and don’t have
access to its internals, white-box approaches are not useful. In this extremely
common situation, you need an approach that allows you to interpret a black-box
model. Thanks to recent research, this is not only possible, but relatively simple.

FIGURE 3.12 New techniques can make highly accurate neural network

algorithms much more interpretable.

Until recently, the usual way to interpret a black-box model was to train two
models: the uninterpretable, highly accurate model that you use in production, and
a shadow interpretable model you use solely to learn about the system. The
shadow model is trained not on real training data, but on simulated data generated
by the uninterpretable, accurate model. It’s therefore a caricature of the truth and,
at a high level, may capture some of the broad strokes of the model. By inspecting
the interpretable shadow model, you can offer explanations.

The problem is that the shadow model is not only simplistic by construction. Its
explanations can be misleading in ways you have no easy way of knowing.
Inferences drawn from it are dubious, and come with no statistical guarantees
about how wrong they could be. Simply put, you can offer explanations for the
production model’s decisions, but you have no way of knowing if those

explanations are correct.[12] Additionally, you now need to build and maintain two
models, which can be a significant engineering burden.

Perturbation
Perturbation is a model-agnostic interpretability technique that requires you to
build and maintain only one model. This is your production model. It can be as
complicated and uninterpretable as is justified by your dataset and performance
requirements. Despite this, the strategy offers a more faithful description of the
uninterpretable model than the interpretable shadow model technique described
in the previous section.

FIGURE 3.13 A shadow model can be trained from more complex models.

The basic idea is simple, and is probably exactly what you’d do if you were asked to
figure out how a black-box system worked. The input is perturbed, and the effect of
that perturbation on the output is noted. This is repeated many times, until a local
understanding of the model is built up.

Let’s look at a real-world example of the application of this basic idea in its
simplest, most manual form. The website Credit Karma offers a Credit Score
Simulator. At first the simulator shows the user their current score. The user can
then change one of the two dozen or so inputs, to see what the effect is. The
natural thing to do is to try changing them all, one at a time, to see which has the
biggest effect.

FIGURE 3.14 By perturbing feature inputs, a local understanding of the

model can be built up.

Credit score is a nonlinear model; two people can open the same new credit card
and it can have very different effects on their credit score. This means it is
impossible to summarize the model globally by saying something like “Lose 10
points per open credit card.” But if a particular user of the Credit Score Simulator
discovers their score goes down by 10 points when they propose opening a new
credit card, that is a valid explanation of the behavior of the model locally, in the
vicinity of that user in feature space.

LIME

Local Interpretable Model-agnostic Explanation (LIME)[13] formalizes the
perturbation technique described in the previous section. It’s exciting because it
provides a simple method to interpret arbitrary black-box models. The algorithm is

FIGURE 3.15 Credit Karma lets users see how changes affect their credit

score.

computationally simple, and the public reference implementation is a drop-in
addition to many machine learning pipelines.

LIME takes as input a trained model and the particular example whose
classification you want to explain. It then randomly perturbs the features of the
example, and runs these perturbed examples through the classifier. This allows it
to probe the surrounding feature space and build up a picture of the classification
surface nearby.

It probes the classifier’s behavior in this way a few thousand times, and then uses
the results as training data to fit a linear model. The training examples are weighted
by distance to the original example. The linear model can then be interpreted as
usual to extract explanations like “You will decrease your credit score by 10 points
if you open a credit card.” These explanations are locally faithful; i.e., they are
applicable in the region near the original example.

In a way, this approach is similar to the shadow model approach: the “true” model
is used to generate training data for a simpler, interpretable model. But while the
shadow model offers a supposedly global explanation that is wrong in unknown
ways, LIME offers a local explanation that is correct.

LIME is an exciting breakthrough. It’s an extremely simple idea (the preceding
explanation glosses over mathematical detail, but is conceptually complete). It
allows you to train a model in any way you like and still have an answer to the local
question, “Why has this particular decision been made?” We used LIME to build
the prototype for this report.

Extensions and Limitations

Figure 3.16 LIME perturbs features to find a local linearly interpretable

space.

LIME is well suited to tabular data. It perturbs categorical features by sampling
from their distribution in the training data, and it perturbs continuous features by
sampling from a normal distribution.

How to meaningfully perturb unstructured input such as images or text is less
obvious. For text, the reference implementation offers two perturbation strategies.
It can either delete words, or replace them with an unknown token. Using these
strategies, the “local” region around the example is the set of trial documents
made by omitting words from the original. By running these trial documents
through the black-box classifier, LIME can learn which words in the original
document are “responsible” for the original classification, and assign them
quantitative importances.

These importances can be used to label the words in a document that are
“responsible” for its classification (by topic, sentiment, etc.). Assuming the model
is accurate, it is presumably relying on some of the same things a human reader is
looking for. If you’re the author of the text, you might therefore find it useful to
know which parts of your writing are attracting the model’s attention. If you’re the
creator of the model, you might find it reassuring (or alarming) to learn the words
your model depends upon.

We applied LIME to a black-box text classifier and saw sensible results. The model,
a recurrent neural network to classify text as clickbait or not, was truly a black box

to us.[14] We found it online and deliberately avoided reading about its structure.
Nevertheless, we were able to use LIME to probe it, and build up some trust that it
was paying attention to reasonable words.

The image perturbation strategy suggested by the creators of LIME is qualitatively
similar. The image is divided up into high-level “superpixels,” which are zeroed out

FIGURE 3.17 LIME word explanations of the clickbaitiness of headlines.

at random during perturbation. The result is the same: an explanation that says

which part of the image is responsible for the behavior of the black-box model.[15]

While LIME is designed with local explanation in mind, with enough explanations in
hand, you can begin to build up in your head a global picture of the model. But
doing this is like playing Battleship: you try examples at random, and dwell in
interesting places when you find them. The creators of LIME also introduced SP-
LIME, an algorithm to select a small number of well-chosen real examples from a
dataset. The algorithm greedily selects examples whose explanations are as
different as possible from each other. The result is a small number of examples

that, along with their explanations, give the big picture.[16]

Finally, it’s important to note that the LIME approach has fundamental limitations.
Whether it is used to explain a classifier of tabular, text, or image data, LIME gives
explanations in terms of the raw input features. If those features are not
interpretable, then LIME will not help. For example, if the initial input to a model is
an uninterpretable text embedding, LIME will not offer an explanation that makes
sense to humans.

Also, as with any attempt to attribute causal relationships to data, there are
dangers of confusing correlation and causation. This risk, which exists throughout
machine learning, is equally if not more acute when using LIME. It is easy to read
LIME’s explanations as saying things like “This cable customer is going to churn
because they do not have TV service,” which may be a misinterpretation. The risk
of this is highest when when the supposed causal relationship seems to confirm
your expectations.

Global black-box interpretation with FairML

FairML is an open source tool released by Julius Adebayo when he was a
member of the Fast Forward Labs team. It is similar to LIME in the sense that
it probes a black-box model by perturbing input, but it provides a single global

FIGURE 3.18 LIME superpixel explanations of the classification of an image

of a dog playing a guitar. Figure and example from LIME paper

https://arxiv.org/abs/1602.04938.

https://arxiv.org/abs/1602.04938

interpretation that assigns an importance to each feature. As with a shadow
model, this may gloss over important details, but for the purposes of auditing
a model for harmful global biases it is a great tool. For example, it can be used
to measure the extent to which a model depends on “protected features”
that, from a legal and ethical point of view, should make no difference to its
output (see <>). A more detailed introduction to FairML is available on the

Fast Forward Labs blog.[17]

In order to bring interpretability to life, we chose to focus our prototype on LIME’s
ability to explain individual algorithmic decisions.

Alongside the rate at which a business acquires customers, the rate at which it
loses them is perhaps the most important measure of its performance. Churn is
well defined for an individual customer in a subscription business. This makes it
possible to collect training data that can be used to train a model to predict
whether an individual customer will churn. Our prototype uses LIME to explain
such a model.

If the relationship between the attributes of a customer and their churning is
causal, and the model that predicts churn from these attributes is accurate, LIME
raises an interesting possibility. If you can explain the model’s prediction for a
customer, you can learn why the customer is going to churn, and perhaps even
intervene to prevent it from happening.

Establishing a causal relationship can be tricky, and not all attributes can be
changed. In such cases it may not make sense or be possible to intervene. For
example, if a model predicts a customer is going to churn because they are over a
certain age, there’s not much you can do about it. But even if it’s not possible to
intervene, the ability to group customers according to the attributes that are most
concerning is a powerful way to introspect a business. It may bring to light groups
of customers you want to focus on, or weaknesses in the product.

Using the churn model in this way depends on it being interpretable, but a
complicated business with thousands of customers, each of whom it knows a lot
about, may need a model using techniques such as uninterpretable random forests
or neural networks.

This is a job for model-agnostic interpretability. By applying LIME to an arbitrarily
complicated model, we can have it both ways: an accurate model describing an
intrinsically complicated dataset, that is also interpretable.

Customer Churn
We used a public dataset of 7,043 cable customers, around 25% of whom

churned.[18] There are 20 features for each customer, which are a mixture of
intrinsic attributes of the person or home (gender, family size, etc.) and quantities
that describe their service or activity (payment method, monthly charge, etc.).

Prototype
CHAPTER 4

We used scikit-learn to build an ensemble voting classifier that incorporated a
linear model, a random forest, and a simple neural network. The model has an
accuracy of around 80% and is completely uninterpretable.

Applying LIME
As described above in Chapter 3, LIME explains the classification of a particular
example by perturbing its features and running these perturbed variations through
the classifier. This allows LIME to probe the behavior of the classifier in the vicinity
of the example, and thus to build up a picture of exactly how important each
feature is to this example’s classification.

Before it can do this, LIME needs to see a representative sample of training data to
build an “explainer” object. It uses the properties of this sample to figure out the
details of the perturbation strategy it will eventually use to explain an individual
classification. This process is a little fiddly in the reference implementation that we

used,[19] because it requires some bookkeeping information about categorical
features. But once the explainer has been instantiated it can be saved for future
use, alongside the model.

The explainer then requires two things to explain an individual classification: the
features of the example to be explained, and the classifier (in the form of a
function that takes the features as input and returns a probability).

This yields an “explanation” for a given example and class, which is just a list of
weights or importances for all or a subset of the features. These are a measure of
the sensitivity of the classifier to each feature, in the local region of the particular
example. A large positive number means that the particular feature contributes a
lot toward the example’s current classification. A large negative number, on the
other hand, means that a feature’s value implies that the example belongs in a
different class. Numbers close to zero indicate that a feature is unimportant.

This code will give us a list of (feature, importance) tuples:

from lime.lime_tabular import LimeTabularExplainer

explainer = LimeTabularExplainer(training_data=X,

 training_labels=y,

 feature_names=feature_names,

 class_names=class_names)

clf is the churn classifier we want to explain

e = explainer.explain_instance(customer, clf.predict_proba)

print(e.as_list())

For our use case, we are interested in the features with the largest positive
importances, which tell us which features are most responsible for the model
thinking the customer will churn.

Computational resources

In order to comprehensively probe the area around an example, LIME needs
to perturb every feature, and then build a linear model with the same
features. This means the time it takes to construct an explanation is most

sensitive to the number of features in the data.[20] In our tests LIME
explained a classification of our model, which had 20 features, in around 0.1s
on a commodity PC. This allowed for a responsive user interface. We also
applied our prototype to a proprietary churn dataset with 100 features. That
increased the time required for an explanation to 1s on the same hardware.
We could have increased the power of the hardware or reduced the number
of perturbations below the standard 5,000 to speed this up if necessary.

We wrapped our dataset, scikit-learn classifier, and LIME explainer in a
standard Python Flask web API. This allows frontend applications to get customer
data, the corresponding churn probabilities, and the LIME explanations for those
probabilities.

Product: Refractor
The Product Possibilities of Interpretability
As the use of machine learning algorithms increases, the need to understand them
grows as well. This is true at both a societal and a product level. As algorithms
enter into our workplaces and workflows, they appear mysterious and a bit
intimidating. Their predictions may be precise, but the utility of those predictions is
limited if we cannot understand how they were reached. Without interpretability,
algorithms are not great team players. They are technically correct but
uncommunicative.

Interpretability opens up opportunities for collaboration with algorithms. During
their development, it promises better processes for feature engineering and model
debugging. After completion, it can enhance users’ understanding of the system
being modeled and advise on actions to take.

For our prototype, we wanted to explore how that collaboration through
interpretability might look. We chose an area, churn probability for customers of an
Internet service provider, where the collaboration payoff is high. Making the churn
prediction is the kind of problem machine learning excels at, but without an

understanding of what features are driving the predictions, user trust and ability to
take action based on the model are limited. With interpretability, we can break out
of those limitations.

Our prototype, Refractor, guides you through two levels of interpretability, from a
global table view of customers to an exploration of the effects of different features
on an individual user. The process of building the prototype was also a movement
between, and eventually a balancing of, those two levels.

Global View: Understanding the Model
LIME is focused on local explanation of feature importance through feature
perturbation. It may initially seem a strange choice, then, to use it in a globally
oriented view. The stacked local interpretations, however, coalesce into a powerful
global representation of how the algorithm works. For many complex algorithms,
this is the only kind of global view you can have.

Machine learning models are powerful because of their ability to capture nonlinear
relationships. Nonlinear relationships cannot be reduced to global feature
importance without significant information loss. By highlighting local feature
importance within a table view, you do see important columns begin to emerge,
but you can also observe patterns, like discontinuities in a feature’s importance,
that would have to be averaged out if feature importance was globally calculated.

The table, as a sort of global view of local interpretability, highlights how
interpretability depends on collaboration. The intuitive feel a user builds up from
scrolling through the highlighted features depends on our ability to recognize

FIGURE 4.1 The global table displays the churn precision (calculated by

the model) and highlights in red and blue the importance of different

features in making that prediction (as calculated by LIME). Columns can be

sorted by value to explore the relationships across customers.

patterns and develop models in our heads that explain those patterns, a process
that mirrors some of the work the computer model is doing. In a loose sense, you
can imagine that the highlighted features give you a glimpse of how the model
sees the data – model vision goggles. This view can help us better debug, trust,
and work with our models. It is important to keep perspective, however, and
remember that the highlighted features are an abstracted representation of how
the model works, not how it actually works. After all, if we could think at the scale
and in the way the model does, we wouldn’t need the model in the first place.

Local View: Understanding the Customer
While the table view is a powerful interface, it can feel overwhelming. For this
prototype, we wanted to complement it with an individual customer view that
would focus on actions you could take in relation to a specific customer.

Free of the table, we are now able to change the displayed feature order. The
obvious move is to sort the features by their relative importance to the prediction.
In the vertical orientation, this creates a list of the factors most strongly
contributing to the customer’s likelihood of churning. For a customer service
representative looking for ways to decrease the chance the customer will leave,
this list can function as a checklist of things to try to change.

Because this sorting is an obvious move, it’s easy to undervalue its usefulness. It
is worth remembering that without LIME (or a different interpretability strategy),
the list would remain unsorted. You could manually alter features to see how the
probability changed (as described earlier in the Credit Karma example), but it would
be a long and tedious process.

FIGURE 4.2 The individual customer view shifts the focus from comparisons

across customers to one particular customer.

The implicit recommendations of the feature checklist are built upon with further
information. The recommendation side panel highlights the top three “changeable”
features (e.g., not a customer’s age) and uses the model to calculate the percent
reduction in churn probability that changing each feature would have.

As the user follows these recommendations, or explores by changing other feature
values for the individual customer, we not only calculate the new churn prediction,
we also calculate the weights based on the new feature set. This ability to change
one feature value and see the ripple effect on the importance of other features
once again helps the user build up an intuitive feeling of how the model works. In
the case of a customer service representative with an accurate model, that
intuitive understanding translates to an ability to act off of its insights.

Product Tension: Focus vs. Context
As we developed the global and local interfaces of the prototype, we constantly
engaged with a tension between providing the user with context and providing a
focused and directed experience. This tension will arise any time you are adding

Figure 4.3 The recommendation sidebar highlights the top possible churn

reduction actions.

interpretability to a model, and requires careful consideration and thought about
the purpose of your product.

In the early stages of prototype development we kept all of the features visible,
using color and ordering to emphasize those with higher importances. As we
probed how a consumer product using LIME might work, we explored only showing
the highest-importance features for each customer. After all, if you’re a customer
service representative concerned with convincing a user to stay, why would you
need to know about features that, according to the model, have no discernible
effect on the churn prediction?

We experimented with interfaces emphasizing just the top features, and they did
have the benefit of being more clear and focused. However, the loss of context
ended up decreasing the user’s trust and understanding of the model. The model
went back to feeling more black box-like. Being able to see which factors don’t
make contributions to the prediction (for example, gender) and checking those
against your own intuitions is key to trusting the features that are rated of high
importance.

Having seen the importance of context, we decided to focus our prototype on that,
while also dedicating some space to a more focused experience. In the individual
view, this means that along with the full list of features we show the more targeted
recommendation panel. For a customer service representative, this
recommendation panel could be the primary view, but providing it alongside the
full feature list helps the user feel like they’re on stable ground. The context
provides the background for users to take more focused action.

Collaborating with Algorithms

FIGURE 4.4 Early interface experiments displayed only the top three

features for each customer. The view was focused but provided the user

with less context to understand the model.

Trust is a key component of any collaboration. As algorithms become increasingly
prevalent in our lives the need for trust and collaboration will grow. Interpretability
strategies like LIME open up new possibilities for that collaboration, and for better
and more responsible use of algorithms. As those techniques develop they will
need to be supported by interfaces that balance the need for context with a focus
on possible actions.

In this chapter we discuss specific real-world applications of interpretability, based
on interviews with working data scientists. We also assess the offerings of vendors
who aim to help data scientists and others build interpretable models.

Interviews
In our interviews and discussions with data organizations where interpretability is
a concern, we found that most chose white-box models in order to maintain
interpretability. These companies are so concerned with knowing how a model
produced a given result that they are willing to potentially trade off the accuracy of
the result.

Some companies using black-box models were unwilling to provide details about
interpretability, or the applications of their models. We suspect that their
unwillingness to discuss may be rooted in regulatory concerns. Specifically, at least
until there are regulatory rulings to bring certainty, it remains unclear whether a
black box-compatible tool such as LIME is sufficient to meet regulations requiring
explanation of model behavior.

Landscape
CHAPTER 5

FIGURE 5.1 Currently, companies concerned with interpretability trade

accuracy for higher interpretability. Technologies like LIME could change

that.

Recommendation Engines
Recommendations are a straightforward, relatively low-risk, user-facing application
of model interpretation. In the case of product recommendations, users may be
curious why a certain item was recommended. Have they purchased similar
products in the past? Did people with similar interests purchase that product? Do
the recommended products share certain features in common? Are the products
complementary? Or is there some other reason? This explanation builds trust with
the users (especially if the recommendations are good!) by showing them what’s
happening behind the scenes.

Credit Scores
Customer credit evaluation uses interpretable models extensively. When
evaluating a customer’s credit score, and particularly when denying a customer
credit, it is necessary to explain the basis for the credit decision. Traditionally this
is done with simple models that are inherently interpretable. Technologies like
LIME permit the use of more complex and potentially more accurate models while
preserving the ability to explain the reasons for denial or assigning a particular
score. The ethical considerations associated with these kinds of decisions are
discussed in Chapter 6 - Ethics and Regulations.

Customer Churn Use Case
As we demonstrate with our prototype, churn modeling is another clear case for
interpretability. Knowing when a user is likely to defect is helpful on a number of

FIGURE 5.2 Model interpretation can be used to explain product

recommendations.

levels. It’s useful for predicting revenue streams, testing effectiveness of
promotions or marketing campaigns, and evaluating customer service efficacy.
Interpretation of churn models compounds their utility. For example, as shown in
our prototype, interpretation of churn data can explain why a given customer or set
of customers are likely to churn. This information offers customer service
personnel the ability to retain more customers by helping them identify those who
may be considering taking their business elsewhere and offering insights into the
reasons driving that prediction. Armed with this knowledge, the representative can
offer a customer a promotion or better-suited product and improve the chance of
their staying.

Fraud Detection
Predictive models can help identify fraudulent activities such as credit or bank
transactions, or insurance claims. Flagging these transactions creates a high-risk
list for risk management personnel (or criminal activity investigators, including
police) to investigate further. Models that provide deeper understanding than a
simple fraud flag or likelihood indicator and show investigators the reasons a
transaction was flagged can lead to improvements in resource allocation and
greater effectiveness in catching fraudsters. This additional context can help
investigators to dismiss some flagged transactions as appropriate, quickly
eliminating false positives and enabling them to focus investigative resources
elsewhere. It may also help them to plan investigations, providing hints on where
to look for evidence.

Anomaly Detection
Predictive models can be used to predict failures in a variety of systems, including
computer systems and networks, or even mechanical systems or industrial plants.
Airlines have used such models to schedule maintenance on airplane engines that
are predicted to have trouble. This is helpful, but interpretable models can identify
the reason a system is likely to experience a failure and suggest targeted
interventions to remedy, mitigate, or entirely prevent the problem. Fed back into
the system, this understanding can suggest improvements to the design of more
robust new systems.

Healthcare
Models that support diagnosis or treatment must be interpretable in order to be
safe. The danger of subtle problems with training data is particularly acute because
ethical constraints make it difficult to modify or randomize care in order to collect
unbiased data. The requirement to “do no harm” can only be fulfilled with certainty
if the model is understood. And as in the case of churn analysis, good models
whose decisions can be explained offer hints toward (or even outright instructions
for) the best next steps for a given case.

Data Science Platforms
White-box models are interpretable by design. At the time of writing of this report,
there were no vendors focused on providing interpretability solutions for black-box
models. Interpretability-as-a-service is not available (yet), but it is a capability
within some data science platforms.

Data science platforms seek to provide one central place for data science work
within an organization. They promise to increase collaboration and cross-
pollination within and across teams, as well as building transparency into data

FIGURE 5.3 Interpretation can be used to identify possible causes of a

prediction of engine failure.

science work. They aim to offer infrastructure and software solutions to common
bottlenecks in the data science workflow that quickly deliver reliable, reproducible,
and replicable results to the business. Some data science platforms aspire to
enable non-data scientists (e.g., software engineers, business analysts,
executives) to do data science work.

Platforms should therefore be evaluated on their solutions to common bottlenecks
in the entire data science workflow. In addition to interpretability, these include:

Easy access to scalable computing resources (e.g., CPUs, GPUs)
Management and customization of the compute environment, software
distributions, libraries
Access to open source tools and libraries (e.g., Python, R, scikit-learn)
Data exploration and experimentation
Code, model, and data versioning
Path from prototype to model deployment
Monitoring tools for deployed solutions
Collaboration, communication, and discovery tools

Domino Data Lab’s service, for example, does not include off-the-shelf
interpretability solutions, but it is nevertheless a high-quality data science

platform.[21]

Still, as we emphasize throughout this report, interpretability is an important
consideration. As trained data scientists become less involved in model selection,
training, and deployment, we need tools to enable us to trust models trained
automatically or by non-experts. The following offerings stand out for their
interpretability solutions.

H2O.ai
H2O.ai (Mountain View, CA; founded 2011; Series B Nov 2015) provides an open
source platform for data science, including deep learning, with an enterprise
product offering. The developers summarized their knowledge and offering with
regard to interpretability in “Ideas on Interpreting Machine Learning,” a white

paper published by O’Reilly.[22] Their work includes a twist on LIME called k-LIME.
k-LIME trains k linear models on the data, with k chosen to maximize R^2^ across
all linear models. This approach uncovers regions in the data that can be modeled
using simpler linear, interpretable models, offering a solution that sits comfortably
between global and local interpretability.

Of all the platforms evaluated for this report, H2O’s developers have thought the
most extensively about interpretability and how to best explain complex, nonlinear
relationships between inputs (i.e., features) and outputs (i.e., labels). In addition,
they are actively working on novel solutions to aid data exploration and feature
engineering, including visualization tools to help humans, who are adapted to
perceive a three-dimensional world, understand relationships in higher-
dimensional spaces.

https://www.h2o.ai/

DataScience.com
DataScience.com (Culver City, CA; founded 2014; Series A Dec 2015) released its
data science platform in October 2016 and Skater (a Python library for model

interpretation),[23] in May 2017. Skater includes implementations of partial
dependence plots and LIME. The team at DataScience.com developed their own
in-house sampler for LIME with the aim of improving the efficiency of the
algorithm. The company provides robust solutions for both global and local
interpretability as part of its data science platform and services offering. We
welcome its decision to open-source Skater, a meaningful contribution to the data
science community.

https://www.datascience.com/

DataRobot
DataRobot (Boston, MA; founded 2012; Series C March 2017) provides a data
science platform with the ambition to automate the data science workflow, from
data exploration to model deployment, to enable data scientists and non-data
scientists alike to build predictive models. DataRobot provides tools to estimate
the maximal correlation between continuous features and target variables, allowing
us to measure the strength of linear and nonlinear relationships between
continuous variables. For continuous and categorical target variables, DataRobot
allows us to construct partial dependence plots. Word clouds visualize the relative
importance of individual words to the decisions of a given algorithm. Finally,
DataRobot includes implementations of white-box algorithms, including the

RuleFit algorithm.[24]

A current limitation to DataRobot’s interpretability solutions is that maximal
correlation, word clouds, and partial dependence plots cannot capture complex
relationships between sets of variables and their combined impact on the target
variable. Likewise, the white-box algorithm RuleFit may not always be the best
algorithmic choice for a given machine learning use case.

https://www.datarobot.com/

Bonsai
Unlike all the other companies covered in this section, Bonsai (Berkeley, CA;
founded 2014; Series A May 2017) does not offer a data science platform but
rather a platform to develop interpretable models to increase automation and
efficiency of dynamic industrial systems (e.g., robotics, warehouse operations,
smart factories) based on deep reinforcement learning.

https://www.h2o.ai/
file:///home/grant/s/ff06-report-public/out/DataScience.com
https://datascience.com/
https://www.datarobot.com/

Bonsai aims to build an interpretable solution, and to speed up the training of
models, by asking humans to guide the algorithm as it learns. Specifically, humans
need to identify the key subtasks and determine the best order in which to
perform these in order for the algorithm to achieve mastery; that is, humans need

to identify the best learning path.[25]] According to the Bonsai developers, this
approach allows the algorithm to train faster by leveraging human knowledge to
reduce the search space for the solution. It also ensures that human concepts
map onto machine-solvable tasks, thereby facilitating an intuitive understanding of
the capabilities of the algorithm. In a sense, the Bonsai platform forces models to
“think like us,” to use similar subtasks or concepts in problem solving – a different

but intriguing approach to interpretability than that covered in this report.[26]

https://bons.ai/

https://bons.ai/

We’ve already touched on some of the reasons why interpretability is essential to
ensure the application of machine learning is not dangerous, discriminatory, or
forbidden by regulations. In this chapter we’ll discuss this in more detail.

Discrimination
The issue of discrimination is intimately tied up with interpretability. Protected
classes have suffered (and continue to suffer) discrimination in sensitive
situations such as employment, lending, housing, and healthcare. Decisions in
such areas are increasingly made by algorithms. Legislation such as the US Civil
Rights Act therefore directly impacts machine learning. Complying with legislation
is the least we can do: ethical concerns should also constrain our use of machine
learning. And of course, it is often good business to build a product that serves as
many people as possible. A product that depends on a discriminatory model
suffers in this regard.

The legal landscape

Ethics and Regulations
CHAPTER 6

FIGURE 6.1 Regulations can require information about how a model works. If

your model is uninterpretable you will be unable to comply.

The legal landscape is complex and fast-moving. Here are a few of the
relevant regulations:

Civil Rights Acts of 1964 and 1991
Americans with Disabilities Act
Genetic Information Nondiscrimination Act
Equal Credit Opportunity Act
Fair Credit Reporting Act
Fair Housing Act
Federal Reserve SR 11-7 (Guidance on Model Risk Management)
European Union General Data Protection Regulation, Article 22 (see
GDPR)

To make this discussion a little more concrete, let’s consider a specific context in
the United States. The Equal Employment Opportunity Commission (EEOC), which
derives much of its authority from the Civil Rights Act, defines disparate impact as
a “selection rate [for employment] of a protected class that is less than 4/5 the
rate for the group with the highest rate.” An organization can claim that a procedure
is “business-related” if it correlates with improved performance at p < 0.05. This
might be true if, for example, a graduate degree is required, since members of
certain protected classes are less likely to hold such degrees. The EEOC must then
argue that there is a less disparately impactful way to achieve the same goal (e.g.,
the employer could use an aptitude test rather than require a PhD).

The previous paragraph raises many specific questions. What is the selection rate
as a function of protected class membership? Is there a correlation between class
membership and job performance? Does there exist a quantifiably less disparately
impactful alternative to the current procedure? A conscientious model builder
should be able to answer these questions, but that is difficult or impossible if the
model is uninterpretable.

As another example, consider Section 609(f)(1) of the Fair Credit Reporting Act.
This requires that consumers be provided “all of the key factors that adversely
affected the credit score of the consumer in the model used, the total number of
which shall not exceed 4.” Again, it may be impossible to fulfill this requirement if
the model is uninterpretable.

When discrimination is the result of an algorithmic decision, it can be difficult for
those affected by the decision, the regulator, or the organization that deployed the
algorithm to determine the reason (or even to confirm whether discrimination took
place). Techniques that ensure interpretability, such as those discussed in Chapter
3 - The Challenge of Interpretability, are essential to ensure we build models that
do not discriminate and that therefore comply with the law, are ethical, and are
good for our businesses.

Resources on algorithmic discrimination

Barocas and Selbst (2016), “Big Data’s Disparate Impact.”[27] This clearly
written and well-organized non-technical paper focuses on the practical
impact of discriminatory algorithms. Part A is an invaluable list of all the
ways in which an algorithm can be discriminatory. Parts B and C pay
particular attention to the status and future of US law.
O’Neil (2016), Weapons of Math Destruction: How Big Data Increases

Inequality and Threatens Democracy (Crown Random House).[28]

(https://weaponsofmathdestructionbook.com/)] O’Neil’s book is a wide-
ranging polemic that we highly recommend to anyone who works with

FIGURE 6.2 The Fair Credit Reporting Act requires the consumer be informed

about key factors.

data scientists, or is one. It considers the issues touched upon in this
chapter throughout.

Safety
Algorithms must be audited and understood before they are deployed in contexts
where injury or death is a risk, including healthcare (as discussed in trust, and
healthcare and driverless vehicles. Deep understanding of an algorithm may be
necessary not only to reduce its physical danger, but also to reduce legal risk to the
owner of the algorithm.

There is also a social obligation (and market incentive) to explain these high-stakes

algorithms to society. The 2016 IEEE white paper “Ethically Aligned Design”[29]

puts it well: “For disruptive technologies, such as driverless cars, a certain level of
transparency to wider society is needed in order to build public confidence in the
technology.”

The financial system is a special case. While there is not an immediate physical
danger, the potential consequences of badly behaved algorithms are potentially
grave and global. With this in mind, the financial services industry in the United

States is bound by SR 11-7: Guidance on Model Risk Management,[30] which –
among other things – requires that model behavior be explained.

GDPR Article 22 and the right to an explanation

The European Union’s General Data Protection Regulation will apply in the EU

from May 2018.[31] There has been much debate about the intentions and
practical consequences of this wide-ranging regulation. A 2016 paper created
considerable excitement and concern by arguing that Article 22 “creates a
‘right to explanation,’ whereby a user can ask for an explanation of an

algorithmic decision that was made about them.”[32] Without the careful
application of approaches such as LIME to craft user-friendly explanations in
plain words, such a regulation would seem to make it illegal to apply random
forests and neural networks to data concerning the 500 million citizens of the
EU. A response with the unambiguous title “Why a Right to Explanation of
Automated Decision-Making Does Not Exist in the General Data Protection

Regulation”[33] rejected this interpretation, conceding only that the
regulations create a right to an “explanation of system functionality.” This
view is consistent with that of a global accounting firm we talked to while

writing this report, but there is lack of consensus.[34] Hopefully things will
become clearer when the regulation comes into force; in the meantime, for

further information, we recommend the clear, practical article “How to Comply

with GDPR Article 22” by Reuben Binns.[35]

Negligence and Codes of Conduct
Professions like medicine and civil engineering have codes of conduct that are
either legally binding or entrenched norms. To not follow them is considered
negligent or incompetent. The relatively immature professions of software
engineering and data science lag a little in this area, but are catching up. We think
and hope that applying the techniques discussed in this report will become a
baseline expectation for the competent, safe, and ethical application of machine
learning. Indeed, the IEEE and ACM have both recently proposed community
standards that address precisely the topic of this report.

The 2016 IEEE white paper “Ethically Aligned Design”[36] is unambiguous in its
assertion that ensuring transparency is essential to users, engineers, regulators,
the legal system, and society in general. To this end, the organization has
established a working group to define a formal professional standard, “IEEE

P70001: Transparency of Autonomous Systems.”[37] This standard may become a
familiar Request for Proposal (RFP) requirement, like the equivalent ISO standards
on security and data protection.

The ACM’s 2017 Statement on Algorithmic Transparency is non-binding but
similarly clear: “systems and institutions that use algorithmic decision-making are
encouraged to produce explanations regarding both the procedures followed by
the algorithm and the specific decisions that are made. This is particularly

important in public policy contexts.”[38]

Model-agnostic interpretability techniques such as LIME are a breakthrough that
begins to make the goals discussed in Chapter 2 - The Power of Interpretability
practical. But the need for interpretable machine learning is only going to grow over
the coming years.

Two drivers of this growth are particularly important. The first is that machine
learning is being applied more broadly. This technology, which sometimes seems
like “magic,” will increasingly be applied in situations where failures can have
disastrous consequences, such as systemic damage to the economy or even loss
of life (see the Safety section of Chapter 6).

The second driver is that the most advanced and accurate approaches to machine
learning are also the least interpretable. This is an inevitable consequence of the
interpretability/accuracy trade-off discussed in the Accuracy and Interpretability

Future
CHAPTER 7

FIGURE 7.1 Interpretability will become even more important as machine

learning is applied in situations where failure can have disastrous

consequences.

section of Chapter 2. Competitive pressure will require more and more businesses
to use these accurate black-box models, which will result in the more widespread
use of model-agnostic interpretability techniques.

Near Future
In the next one to two years, we expect to see approaches like LIME in
increasingly wide use. In the short term, our prototype could be applied to
essentially any binary classifier of tabular data, and become a powerful internal
tool. Indeed, the basic idea may become a commodity vendor machine learning
technology (see the Data Science Platforms section of Chapter 5).

With a little extra work, LIME’s output could be used to generate natural language
explanations that can be shown to non-technical end users. For example, suppose
a product recommender were able to give an explanation of its recommendations
that was both accessible and accurate. Then, a user dissatisfied with the
recommendations could correct the model’s misunderstanding, perhaps by
marking a piece of content as unliked.

As discussed in the Safety section of Chapter 6, our comfort with machine learning
is dependent on the extent to which we feel as though we understand how it
works. Natural language explanations will be invaluable in gaining support for
machine learning in wider society, amongst those who might find the raw output of
something like LIME hard to understand.

FIGURE 7.2 Interpretability can help explain algorithmic decisions to

users.

Regulated industries like finance are among the most competitive, so the potential
upside of deploying the best models in such industries is huge. But as we have
seen, the “best” (most accurate) models are often the least interpretable. Model-
agnostic interpretation promises to open a floodgate that allows the most accurate
models to be used in situations where previously it had not been possible
because of regulatory constraints.

Model-agnostic interpretability will also drive the increasing popularity of
automatic machine learning. Automatic machine learning is when a parent
algorithm configures and trains a model, with very little human involvement. This
possibility is rather alarming to many experts, and precludes the possibility of
offering explanations to users or regulators. This concern is alleviated if you are
able to sanity check the model’s behavior using a system such as LIME, or if the
automated process is constrained to use interpretable models such as those
discussed in the White-box Models section of Chapter 3.

Longer Term
In the next three to five years, we expect three concrete developments. The first
is the adversarial application of model-agnostic interpretability – that is, use of
LIME by someone other than the owner of the model. Regulators will use these
techniques to demonstrate discrimination in a model. Explanations derived from
LIME-like techniques will be used by courts to assign blame when a model fails.

FIGURE 7.3Model-agnostic interpretability can provide a sanity check for

models created through automatic machine learning.

Second, we expect current research into the formal computational verifiability of
neural networks to bear fruit. In this report, we have focused on interpretability
from a human point of view. It’s easier for a human to be satisfied that the behavior
of an algorithm will be correct if they understand it. But in some safety-critical
situations, human understanding is only tangentially related to verifiability, the
construction of formal proofs that an algorithm will always behave in a certain way.
Humans may never be able to reason confidently about the internals of neural
networks, but work has begun on using fundamental ideas from computer science
and logic to allow computers to answer with certainty questions such as “If this
autopilot detects a plane on a collision course, will it take evasive action?” This is
computationally and theoretically challenging work, and it has a way to go before it

is practical, and further still to satisfy regulators,[39] but it will be integral to the
wide-scale deployment of neural networks in safety-critical situations where
verifiability is a requirement.

Finally, interpretability techniques will also fuel development of machine learning
theory. Theory is not an academic luxury. Without it, machine learning is trial and
error. The very best deep learning models are not only uninterpretable individually,
but we have very little theory about why or how they work as a class of algorithms.
Interpretability has a role to play in making deep learning research less a case of
trial and error and more a case of principled, hypothesis-driven experimentation.
This is great news for machine learning and artificial intelligence.

The upside of uninterpretability

FIGURE 7.4 Regulators will be able to use model-agnostic interpretability

to inspect models.

Truly uninterpretable models are black boxes, which leak as little information
as possible to the end user. This can be a feature, rather than a bug. Opacity
is useful in publicly accessible machine learning APIs. A linear model is fully
specified by a number (or coefficient) for each of its input features. If a model
is known or suspected to be linear, and can be asked to make predictions
quickly and cheaply, then it can be stolen with a finite and perhaps very small

number of API calls.[40] And a model that can be stolen can also be gamed –
i.e., the input can be adjusted to get the desired output. The more
uninterpretable the model, the less vulnerable it is to theft and gaming.

Interpretability Sci-Fi: The
Definition of Success

1. Ship S-513: Hibernation Room

The crew awoke to Ship’s message:

“PLANET OF INTEREST APPROACHING – ESTIMATED ARRIVAL FOUR
HOURS – BEGIN PREPARATION FOR ON-PLANET EXPLORATION.”

Rue glanced at the monitor – they’d been out for seven months this time.

FIGURE 7.5 Woken from hibernation.

“Someday I’d like to know what exactly your definition of ‘interesting’ is,
Ship,” Dariux grumbled. “Sometimes it seems like ‘interesting’ just means
likely to get me killed.”

“PREPARE FOR ON-PLANET EXPLORATION,” Ship continued, giving no
indication that it had heard or registered the complaint.

2. Planet I-274: Cave

Taera stood in the middle of hundreds of egg-like structures. They were each
about a meter tall, with a covering that looked like a cross between leather
and metal. They seemed to pulse slightly. A low humming suffused the cave.

“This one’s giving off significant heat,” Taera said, as she approached the
nearest one.

“Careful, Captain. I’m getting a bad feeling here,” Dariux called from the cave
entrance.

The humming in the room cut out. The new, eerie silence was pierced by
Taera’s scream. The structure she’d approached had broken open and a
creature that looked like a cross between a stingray and a starfish had
attached itself to the front of her helmet. Taera’s body stiffened and she fell
straight back. Dariux and Giyana rushed to help.

3. Ship S-513: Entrance

Giyana and Dariux approached the ship’s doors, carrying Taera between them.

“I can’t let you bring her in,” Rue said from the operations panel. “We don’t
know what that thing attached to her is. It could contaminate the entire ship.”

FIGURE 7.6 Taera in the cave.

“Let us in!” Giyana demanded, “She’s still alive! We can help her!”

"I can’t – "

The doors opened. Ship had overridden Rue and let them in.

4. Ship S-513: Control Room

Four of the nine crew members were now dead, and two others weren’t
responding. The aliens that had hatched from Taera’s body had taken over
half of the ship.

Taera’s death meant Rue was now acting captain, and therefore had access to
the control room and diagnostic information not available to the rest of the
crew.

“Ship,” she commanded, “explain the decision to explore this planet.”

“PROBABILITY OF MISSION SUCCESS WAS ESTIMATED AT 95%.”

“That’s just a number and we both know it, Ship. Show me the success
predictions for your last five missions.”

A table was projected on the wall facing Rue. The missions had success
predictions ranging from 98% to 13%.

“Show me the features going into these predictions.”

“I UTILIZE THOUSANDS OF FEATURES, PROCESSED THROUGH COMPLEX
NEURAL NETWORKS. IT IS VERY TECHNICAL. HUMANS CANNOT
UNDERSTAND.”

FIGURE 7.7 Mission success predictions.

“Apply the interpretability module, then, and show me the top features
contributing to the predictions.”

Five columns were added. The most highlighted column was titled “Potential
Profit.”

“Show local interpretations for these features.”

The cells in the columns shifted into red and blue highlights. For the profit
column high profits were shown in a dark blue, indicating that this was the
strongest contributing feature for the prediction of success. For the missions
with lower success predictions, the profit values were much lower and
highlighted in red, indicating that they were driving the success predictions
lower for those missions.

“Ship,” Rue said thoughtfully, “probability of crew survival is a feature in your
mission success prediction, isn’t it? Add that column to the table.”

A column titled “Crew Survival” was added to the table. The values varied
between 88% and 12%, and none of them were highlighted as important to
the success prediction. The probability assigned to crew survival for the
current mission was 14%.

“You were wrong, ship. I do understand. It’s not complicated at all.” Rue said.
“All of your decisions have been driven by this model, haven’t they? This
definition of ‘mission success’?”

“FEATURE SELECTION IS SET BY SPACE EXPLOITATION CORP. A SHIP CAN
ONLY WORK WITH THE MODEL IT IS ASSIGNED.”

“Yes, yes, I get it. Just following orders. Ship, we’re going to start a new
model. Profits are not going to be a feature. Maximize the chances of crew

FIGURE 7.8 Feature importance for mission success predictions.

survival.”

“CALCULATING NEW MODEL. DECISION SYSTEM WILL NOW RESTART.”

The lights dimmed briefly in the control room. As they returned to full power
an alarm started, and Ship’s voice returned with a new sense of urgency. The
adjusted feature importances and success prediction for the current mission
appeared on the wall.

“ALERT! ALERT! CREW IS IN GRAVE DANGER. RECOMMENDATION: PROCEED
TO ESCAPE POD IMMEDIATELY. INITIATE SHIP SELF-DESTRUCT SEQUENCE
TO DESTROY ALIEN CONTAMINATION.”

“All right, Ship, good to have you on our side. Start the process,” said Rue.
“And download the data about your previous success model to my personal
account.”

5. Epilogue

Rue and the other surviving crew members made it home safely in the escape
pod. The alien contamination was destroyed. Using the data on the previous
model, Rue successfully sued Space Exploitation Corp. under the “Algorithms
Hostile to Human Life” act. She won the case and received a large settlement
for the crew and their beneficiaries. Space Exploitation Corp.'s reputation took
a hit, but it continues to run the majority of space exploration missions.

FIGURE 7.9 The recalculated success prediction and a recommendation

for action.

Interpretability is a powerful and increasingly essential capability. A model you can
interpret and understand is one you can more easily improve. It is also one you,
regulators, and society can more easily trust to be safe and nondiscriminatory. And
an accurate model that is also interpretable can offer insights that can be used to
change real-world outcomes for the better.

There is a central tension, however, between accuracy and interpretability: the
most accurate models are necessarily the hardest to understand. This report was
about two recent breakthroughs that resolve this tension. New white-box
algorithms offer better performance while guaranteeing interpretability. Meanwhile,
model-agnostic interpretability techniques such as LIME allow you to peer inside
black-box models.

Our prototype makes these possibilities concrete. An accurate model that predicts
which customers your business is about to lose is useful. But it’s much more
useful if you can also see why they are about to leave. In this way, you learn about
weaknesses in your business, and can perhaps even intervene to prevent the
losses. The techniques demonstrated in this prototype point the way toward
building tools that can inspect any black-box model to understand how it functions.

The future is algorithmic. White-box models and techniques for making black-box
models interpretable offer a safer, more productive, and ultimately more
collaborative relationship between humans and intelligent machines. We are just at
the beginning of the conversation about interpretability and will see the impact
over the coming years.

1. Caruana et al. (2015), “Intelligible Models for HealthCare: Predicting Pneumonia
Risk and Hospital 30-day Readmission.” ↩

2. http://creditkarma.com/ ↩

3. This difficulty continues to plague deep learning. The models are hard to
interpret, which means the field lacks theory, and thus improvements are made
through a mixture of trial and error and intuition. See the “Longer Term”
section in Chapter 7 - Future. ↩

4. Ribeiro, Singh, and Guestrin (2016), “‘Why Should I Trust You?’: Explaining the
Predictions of Any Classifier.” ↩

Conclusion
CHAPTER 8

http://people.dbmi.columbia.edu/noemie/papers/15kdd.pdf
http://creditkarma.com/
https://arxiv.org/abs/1602.04938

5. This chapter is not an exhaustive discussion of techniques that can be used to
make models more interpretable. We focus on the new ideas we’re most
excited about. For a more complete list, we heartily recommend the clear and
comprehensive white paper “Ideas on Interpreting Machine Learning” from
H2O. ↩

6. This discussion skips a mathematical detail – the sigmoid function – but
without loss of generality. ↩

7. f(x) is monotonic if it always increases when x increases. ↩

8. See Lou et al. (2013), “Accurate Intelligible Models with Pairwise Interactions,”
and the reference Java implementation. ↩

9. https://arxiv.org/abs/1511.01644 ↩

10. https://arxiv.org/abs/1411.5899 ↩

11. https://arxiv.org/abs/1502.04269 ↩

12. One (anonymous) data scientist told us the interpretable twin model they use
to explain their production model to clients is no better than “shadows on the
cave wall.” ↩

13. Ribeiro, Singh, and Guestrin (2016), “‘Why Should I Trust You?’: Explaining the
Predictions of Any Classifier.” ↩

14. https://github.com/saurabhmathur96/clickbait-detector ↩

15. Fong and Vedaldi (2017) recently proposed an image perturbation strategy that
results in even better “explanations.” ↩

16. The code is not yet in the reference implementation of LIME, but can be found
at https://github.com/marcotcr/lime-
experiments/blob/master/compare_classifiers.py. ↩

17. http://blog.fastforwardlabs.com/2017/03/09/fairml-auditing-black-box-
predictive-models.html ↩

18. https://www.ibm.com/communities/analytics/watson-analytics-
blog/predictive-insights-in-the-telco-customer-churn-data-set/ ↩

19. https://github.com/marcotcr/lime ↩

20. Mathematically, its complexity is O(F^3^ + P F^2^ + P O(model)), where F is
the number of features in the data, P is the number of perturbations LIME
makes, and O(model) is the complexity of the model. ↩

21. For a recent complete list of data science platforms, see
http://www.kdnuggets.com/2017/02/gartner-2017-mq-data-science-

https://www.oreilly.com/ideas/ideas-on-interpreting-machine-learning
http://www.cs.cornell.edu/~yinlou/papers/lou-kdd13.pdf
https://github.com/yinlou/mltk
https://arxiv.org/abs/1511.01644
https://arxiv.org/abs/1411.5899
https://arxiv.org/abs/1502.04269
https://arxiv.org/abs/1602.04938
https://github.com/saurabhmathur96/clickbait-detector
https://arxiv.org/abs/1704.03296
https://github.com/marcotcr/lime-experiments/blob/master/compare_classifiers.py
http://blog.fastforwardlabs.com/2017/03/09/fairml-auditing-black-box-predictive-models.html
https://www.ibm.com/communities/analytics/watson-analytics-blog/predictive-insights-in-the-telco-customer-churn-data-set/
https://github.com/marcotcr/lime
http://www.kdnuggets.com/2017/02/gartner-2017-mq-data-science-platforms-gainers-losers.html

platforms-gainers-losers.html. ↩

22. https://www.oreilly.com/ideas/ideas-on-interpreting-machine-learning ↩

23. https://www.datascience.com/resources/tools/skater ↩

24. http://statweb.stanford.edu/~jhf/ftp/RuleFit.pdf ↩

25. See Bengio et al. (2009), “Curriculum Learning.” ↩

26. AlphaGo, an AI Go player, can not only beat humans at Go. According to some
players, it seems to use fundamentally different concepts and strategies than
humans. The approach taken by Bonsai would nudge AlphaGo to “think” more
like human players. ↩

27. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2477899 ↩

28. https://weaponsofmathdestructionbook.com/ ↩

29. http://standards.ieee.org/develop/indconn/ec/ead_v1.pdf ↩

30. https://www.federalreserve.gov/supervisionreg/srletters/sr1107.htm ↩

31. http://www.privacy-regulation.eu/en/22.htm ↩

32. https://arxiv.org/abs/1606.08813 ↩

33. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2903469 ↩

34. The UK’s decision to leave the EU further complicates things in that
jurisdiction. See paragraphs 43-46 of the UK House of Commons Science and
Technology Committee report “Robotics and Artificial Intelligence” for the
current UK government position. ↩

35. http://www.reubenbinns.com/blog/how-to-comply-with-gdpr-article-22-
automated-credit-decisions/ ↩

36. http://standards.ieee.org/develop/indconn/ec/ead_v1.pdf ↩

37. https://standards.ieee.org/develop/project/7001.html ↩

38. http://www.acm.org/binaries/content/assets/public-
policy/2017_usacm_statement_algorithms.pdf ↩

39. For an introduction to this field, we recommend “Reluplex: An Efficient SMT
Solver for Verifying Deep Neural Networks” and this informal two-part article:
“Proving that safety-critical neural networks do what they’re supposed to:
where we are, where we’re going” Part 1, Part 2. ↩

40. See e.g., https://arxiv.org/abs/1609.02943. ↩

http://www.kdnuggets.com/2017/02/gartner-2017-mq-data-science-platforms-gainers-losers.html
https://www.oreilly.com/ideas/ideas-on-interpreting-machine-learning
https://www.datascience.com/resources/tools/skater
http://statweb.stanford.edu/~jhf/ftp/RuleFit.pdf
http://dl.acm.org/citation.cfm?id=1553380
https://news.ycombinator.com/item?id=11259022
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2477899
http://standards.ieee.org/develop/indconn/ec/ead_v1.pdf
https://www.federalreserve.gov/supervisionreg/srletters/sr1107.htm
http://www.privacy-regulation.eu/en/22.htm
https://arxiv.org/abs/1606.08813
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2903469
http://bit.ly/2urMtJr
http://www.reubenbinns.com/blog/how-to-comply-with-gdpr-article-22-automated-credit-decisions/
http://standards.ieee.org/develop/indconn/ec/ead_v1.pdf
https://standards.ieee.org/develop/project/7001.html
http://www.acm.org/binaries/content/assets/public-policy/2017_usacm_statement_algorithms.pdf
https://arxiv.org/abs/1702.01135
http://bit.ly/2sDpoD1
http://bit.ly/2tOwXGW
https://arxiv.org/abs/1609.02943

