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chapter 1
Introduction

Our society is increasingly dependent on intelligent ma-
chines. Algorithms govern everything from which e-mails 
reach our inboxes to whether we are approved for credit to 
whom we get the opportunity to date. And their impact on 
our experience of the world is growing.

figure 1.1 As algorithmic systems become more prevalent, the 

need to understand them grows.
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This rise in the use of algorithms coincides with a surge in 
the capabilities of black-box techniques, or algorithms whose 
inner workings cannot easily be explained. The question of 
interpretability has been important in applied machine learn-
ing for many years, but as black-box techniques like deep 
learning grow in popularity, it’s becoming an urgent concern. 
These techniques offer breakthrough capabilities in analyzing 
and even generating rich media and text data. These systems 
are so effective in part because they abstract out the need for 
manual feature engineering. This allows for automated sys-
tems that are able to do completely new things, but are unable 
to easily explain how they do those things.

Interpretability is relevant to anyone who designs systems 
using machine learning, from engineers and data scientists 
to business leaders and executives who are considering new 

figure 1.2 With tools that aid interpretability, we can gain  

insight into black-box systems.

product opportunities. It allows you to better understand your 
machine learning systems and thus generate more useful re-
sults. It helps to explain algorithmic predictions and there-
fore change real-world outcomes. It is necessary in regulated 
industries where you have to prove that business practices are 
not dangerous or discriminatory. Further, interpretability is a 
key tool in understanding bias and accountability in the in-
creasingly automated systems we are deploying throughout 
society.

In this report, we explore two areas of progress in inter-
pretability: systems designed to be perfectly interpretable, or 
white-box algorithms, and emerging research on approaches 
for inspecting black-box algorithms.
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chapter 2
The Power of Interpretability

If a model makes correct decisions, should we care how 
they are made? More often than not, the answer is a resound-
ing yes. This chapter explains why.

2.1 What Is Interpretability?
From the point of view of a business deploying machine 

learning in a process or product, there are three important 
kinds of interpretability:

• Global — Do you understand the model as a whole to the 
extent required to trust it (or to convince someone else 
that it can be trusted)?

• Local — Can you explain the reason for a particular 
decision?

• Proxy — When the model is a perfect proxy for the 
system you are interested in, can you say how the model 
works, and thus learn about how the real system works?

When one or more of these conditions holds, it makes our 
use of data safer and opens the door to new kinds of products.!
!

!
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its performance on the remainder. By assessing the model 
using data it has never seen, they reduce the risk that a pow-
erful model with a lot of flexibility will simply memorize the  
training data.

This possibility, known as overfitting, is a concern because 
the model will one day be deployed in the wild. In this envi-
ronment, by definition, it cannot have seen the data before. 
An overfitted model does not capture fundamental, general 
trends in data and will perform poorly in the real world. Val-
idation during training diminishes this risk. It is an absolute 
minimum requirement for building a trustworthy model.

But memorization or overfitting is not the only danger 
that lurks during training. If the training data has patterns 
that are not present in real-world data, an apparently good 

Training Data

ModelTraining

Compare
Predictions to
Validation Set

Holdout validation set

Outcomes/Predictions

Model

figure 2.2 Model validation can prevent overfitting.

2.2 Enhancing Trust
Data scientists have a well-established protocol to mea-

sure the performance of a model: validation. They train a 
model with perhaps 80% of their training data, then measure 

Churn Prediction

PredictionContract TenureInternet

Fiber OpticYearly

Monthly DSL

DSLYearly

10

16

72

50%

24%

17%

... ... ... ...

ID

122

123

124

...

PredictionContract TenureInternet

Fiber OpticYearly

Monthly DSL

DSLYearly

10

16

72

50%

24%

17%

... ... ... ...

ID

122

123

124

...

Feature Importance (More likely to churn): Low High

Feature Importance (Less likely to churn): Low High

Feature Importance: Low High

Model with Global Interpretability

Model with Local Interpretability
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the model’s prediction at a global level. Local interpretability 

shows feature importance for the model’s prediction at a re-

cord-by-record level.
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goal was to identify high-risk patients who should be admit-
ted to hospital, and low-risk patients for outpatient treatment. 
With enough data, the conceit of machine learning is that it 
is able to identify patterns that doctors might miss, or that 
might be glossed over by crude protocols for hospital triage.

When the researchers analyzed the model (using some of 
the techniques we discuss in this report), they realized that 
the model wanted to treat patients with asthma as low-risk 
outpatients. Of course, the model was wrong: people with 
asthma are at high risk if they catch pneumonia and should be 
admitted to the intensive care unit. In fact, they often are, and 
it was this that caused a problem in the training data. Asthma  
patients receive excellent care when they have pneumonia, so 
their prognosis is better than average.

figure 2.4 Models built from training data can lack context for 

certain relationships.model will detect these patterns and learn to depend on them, 
and then perform poorly when deployed.

Some differences between training and real-world data 
can be very obvious. For example, if you train a self-driving 
car on public roads in a country where people drive on the left, 
and then deploy that car in the United States, you’re asking 
for trouble.

But sometimes subtler discrepancies can exist in the 
training data without your knowledge. A memorable ex-
ample taken from a 2015 paper makes this point clearly.1 
 Doctors and statisticians trained a model to predict the "prob-
ability of death" of patients suffering from pneumonia. The 

1 Caruana et al. (2015), "Intelligible Models for HealthCare: Predict-

ing Pneumonia Risk and Hospital 30-day Readmission." http://peo 

ple.dbmi.columbia.edu/noemie/papers/15kdd.pdf

Traning Context
(UK, drive on the left)

Deployed Context
(USA, drive on the right)

figure 2.3 Validation does not help when training data and re-

al-world data are too different.
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that we discuss these regulations in any specific detail, we do 
so in 6.1 Ethics and Regulations. We bring them up here for 
two reasons.

First, if these regulations apply, they almost always imply 
an absolute requirement that you build interpretable models. 
That is because the goal of these regulations is often to pre-
vent the application of dangerous or discriminatory models. 
For example, you may be required to prove you haven’t over-
fitted. An overfitted model won’t work in the real world, and 
deploying one may hurt more than just your own bottom line. 
You may be required to prove that dangerous predictive fea-
tures haven’t leaked in, as in the pneumonia treatment model 
that sent asthma patients home. And you may be required to 
show that your model is not discriminatory, as is the case if a 
model encourages a bank to lend to borrowers of a particular 
race more often.

In a regulated environment, it is insufficient to show that 
these problems were not present in your training data. You 
must also be able to explain the model derived from this train-
ing data, to show that they can never occur in the model ei-
ther. This is only possible if the model is interpretable.

Second, even in industries where regulations don’t apply, 
the regulations set a standard for interpretability. They for-
malize and extend the question of whether the model builder 
trusts the model to behave as desired. In some cases they also 
emphasize the possibility of discrimination, which is some-
thing all data scientists should bear in mind. A model that 
perfectly captures the real world with 100% accuracy might 
seem desirable, but training data often embeds society’s  
biases. It may be unethical, if not illegal, to deploy a model 

A model that captures this will perform well by the stan-
dard training metrics of accuracy, precision, and recall, but it 
would be deadly if deployed in the real world. This is an exam-
ple of leakage: the training data includes a feature that should 
not be used to make predictions in this way. In this case, the 
model depended on a flawed assumption about the reason for 
the correlation between asthma and pneumonia survival.

It is obviously essential to be confident that you haven’t 
embedded bugs like this into a statistical model if it is to be 
used to make life-and-death medical decisions. But it’s also 
acutely important in any commercial setting. At a minimum, 
we need to understand how a model depends on its inputs in 
order to verify that this matches our high-level expectations. 
These perhaps come from domain experts, previous models 
that have worked well, or legal requirements. If we can’t do 
this, then we can’t be confident that it will behave correctly 
when applied on data that was not in the training or valida-
tion set. If we can, then we don’t just get a feeling of confi-
dence: we gain the power to explain decisions to customers, 
to choose between models, and to satisfy regulators.

This trust is particularly important in machine learning 
precisely because it is a new technology. Rightly or wrongly, 
people tend to distrust novel things. Machine learning will 
only earn the trust of consumers, regulators, and society if we 
know and communicate how it works.

2.3 Satisfying Regulations
In many industries and jurisdictions, the application of 

machine learning (or algorithmic decision-making) is reg-
ulated. This report does not offer legal advice. To the extent 
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on its own is of limited use if they want to know what they 
need to do to improve it. The consumer app Credit Karma 2 
 allows its users to figure this out for themselves using a brute 
force method similar to the new algorithm that we use in this 
report’s prototype (see 3.3.1 Perturbation).

Interpretable models also tend to be more user-friendly. 
For example, the APGAR score used at childbirth gives an 
integer score out of 10. The higher the number, the healthier 
the newborn baby. The score is comprised of three numbers, 
measured by eye and combined by mental calculation. This 

2 http://creditkarma.com/

figure 2.5 Local interpretability means you can explain a mod-

el’s predictions and even suggest actions.

that captures and recapitulates these biases. Interpretability 
allows you to reason about whether your model embeds bias-
es before you go ahead and apply it at scale.

2.4 Explaining Decisions
Local interpretability — the ability to explain individual 

decisions — opens up new analyses and features, and even 
new products. The ability to answer the question "Why has 
the model made this decision?" is a superpower that raises 
the possibility of taking an action to change the model’s de-
cision. Let’s consider some examples of what you can do with 
that capability.

A model of customer churn tells you how likely a customer 
is to leave. A locally interpretable model — that is, one in which 
you can explain a particular prediction — offers an answer 
to the question of why this customer is going to leave. This 
allows you to understand your customer’s needs and your 
product’s limitations. It even raises the possibility of taking 
a well-chosen action to reduce the probability of churn. This 
problem is the focus of our prototype (4 Prototype).

A model that predicts hardware failure in an engine or on 
a server is of course extremely useful. You can send an engi-
neer out to inspect an appliance that is predicted to fail. But if 
the model is locally interpretable, then you can not only warn 
that a problem exists: you can potentially solve the problem, 
either remotely or by giving the engineer the reason, saving 
them time in the field.

A model that predicts loan repayment (or credit rating) 
is not only useful to the lender, it is of enormous interest to 
the borrower. But showing borrowers a credit rating number 
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2.5 Improving the Model
An uninterpretable model suffers from the performance 

and regulatory risks discussed earlier (see 2.2 Enhancing 
Trust, and 2.3 Satisfying Regulations), and closes the door on 
products that take advantage of explanations (2.4 Explaining 
Decisions). It’s also much harder to improve.

Debugging or incrementally improving an uninterpreta-
ble black-box model is often a matter of trial and error. Your 
only option is to run through a list of ideas and conduct ex-
periments to see if they improve things. If the model is inter-
pretable, however, you can easily spot glaring problems or 
construct a kind of theory about how it works. The problems 
can be fixed, and the theory narrows down the possibilities 
for improvements. This means experiments are driven by hy-
potheses rather than trial and error, which makes improve-
ments quicker.3

A striking example of debugging is given in the paper in-
troducing Local Interpretable Model-agnostic Explanations 
(LIME),4 the black-box interpretability technique we use in 
this report’s prototype (4 Prototype). In that paper, the au-
thors describe a convolutional neural network image classi-
fication model able to distinguish between images of wolves 

3 This difficulty continues to plague deep learning. The models are 

hard to interpret, which means the field lacks theory, and thus 

improvements are made through a mixture of trial and error and 

intuition. See 7.2 Longer Term.

4 Ribeiro, Singh, and Guestrin (2016), "Why Should I Trust You?: 

Explaining the Predictions of Any Classifier." https://arxiv.org/

abs/1602.04938

heuristic is not machine learning, but it is algorithmic deci-
sion-making. The simplicity of the APGAR score means that, 
in a fast-moving environment, the obstetrician or midwife 
trusts its outputs and can reason about the problem with the 
inputs in their head: the ultimate in usability. As we discuss 
in 2.6 Accuracy and Interpretability, this simplicity comes at 
a cost: the model is less accurate than a huge neural network 
would be. But it can often be worth trading a little accuracy for 
interpretability, even in contexts less extreme than hospitals.

 
 

figure 2.6 The APGAR score, used in evaluating the health of 

infants, shows how a simple model can inspire confidence be-

cause its operations are understandable.
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ments quicker.3
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3 This difficulty continues to plague deep learning. The models are 

hard to interpret, which means the field lacks theory, and thus 

improvements are made through a mixture of trial and error and 

intuition. See 7.2 Longer Term.

4 Ribeiro, Singh, and Guestrin (2016), "Why Should I Trust You?: 

Explaining the Predictions of Any Classifier." https://arxiv.org/

abs/1602.04938

heuristic is not machine learning, but it is algorithmic deci-
sion-making. The simplicity of the APGAR score means that, 
in a fast-moving environment, the obstetrician or midwife 
trusts its outputs and can reason about the problem with the 
inputs in their head: the ultimate in usability. As we discuss 
in 2.6 Accuracy and Interpretability, this simplicity comes at 
a cost: the model is less accurate than a huge neural network 
would be. But it can often be worth trading a little accuracy for 
interpretability, even in contexts less extreme than hospitals.

 
 

figure 2.6 The APGAR score, used in evaluating the health of 

infants, shows how a simple model can inspire confidence be-

cause its operations are understandable.
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This report is about exciting recent developments that re-
solve this tension. In the last few years, "white-box" models 
have been developed that are interpretable, but also sacrifice 
minimal accuracy. Separately, model-agnostic approaches 
that provide tools to peer inside accurate but previously un-
interpretable "black-box" models have been devised. The fol-
lowing chapters discuss and illustrate these developments.

figure 2.8 Choosing a model often involves a trade-off between 

interpretability and accuracy. This report is about breaking out 

of this trade-off.
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and Husky dogs with high accuracy. LIME’s ability to "explain" 
individual classifications makes it obvious that the classifier 
has incorrectly learned to identify not wolves and Husky dogs, 
but snow in the background of the image, which was more 
common in the training images of wolves.

2.6 Accuracy and Interpretability
So, why not simply use interpretable models? The problem 

is that there is a fundamental tension between accuracy and 
interpretability. The more interpretable a model is, generally 
speaking, the less accurate it is. That’s because interpretable 
models are simple, and simple models lack the flexibility to 
capture complex ideas. Meanwhile, the most accurate ma-
chine learning models are the least interpretable.

figure 2.7 An explanation of a model can reveal major problems, 

such as in this image classifier, which was trained to distinguish 

between wolves and Husky dogs but is using the snow in the 

background to tell the difference. Figure from the LIME paper 

(https://arxiv.org/abs/1602.04938).
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The Challenge of Interpretability

In the previous chapter we saw the power of interpretabil-
ity to enhance trust, satisfy regulations, offer explanations 
to users, and improve models. But we also saw that there is 
a fundamental tension between these goals and a model’s 
ability to get decisions right. Traditionally, you can have an 
interpretable model or you can have an accurate model, but 
you can’t have both.
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In this chapter we’ll first explain the technical reasons for 
this tension between interpretability and accuracy. We’ll then 
look at two ways to have your cake and eat it. We’ll take a tour 
of a handful of new "white-box" modeling techniques which 
are extremely interpretable by construction, but retain accu-
racy. We’ll then introduce the idea that is the technical focus 
of the report: interpretation of black-box models by perturba-
tion and, in particular, LIME.1

3.1 Why Are Some Models Uninterpretable?
What is it about a model that makes it uninterpretable? 

Let’s first look at the gold standard of interpretability — lin-
ear models — in the context of a classification problem (the 
difficulties with regression models are not qualitatively dif-
ferent). Suppose we’re classifying borrowers as likely to repay 
or not. For each applicant we will have access to two pieces of 
information: their annual income, and the amount they want 
to borrow. For a training sample we also have the outcome. If 
we were to plot the training data, we might see something like 
figure 3.2.

At a high level, this training data shows that people who 
repay tend to earn a lot and borrow a little. But the details are 
important. You can draw a straight line on this chart that sep-

1 This chapter is not an exhaustive discussion of techniques that can 

be used to make models more interpretable. We focus on the new 

ideas we’re most excited about. For a more complete list, we heartily 

recommend the clear and comprehensive white paper "Ideas on 

Interpreting Machine Learning" from H2O (https://www.oreilly.com/

ideas/ideas-on-interpreting-machine-learning).

arates the repayers and non-repayers. You can then build an 
accurate model by simply asking the question, "Is the appli-
cant above or below the line?" Formally, this is a linear mod-
el; i.e., one in which the predicted repayment probability is a 
linear function of income and loan amount.2 In other words:

Probability of repayment = A × income + B × loan amount

 
where the coefficients  A  and  B  are two numbers.

Such a model is interpretable.  A  is just a number, and not 
a function of any other number, so we can easily check wheth-
er it is positive. If it is, we can know with certainty that repay-
ment probability increases with income in our model. This  

2 This discussion skips a mathematical detail — the sigmoid func-

tion — but without loss of generality.

figure 3.2 Linear models are easy to understand and explain.
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directional behavior probably matches the expectations of 
domain experts, which is reassuring to us and to regulators. 
The structure of the equation means that this trend will al-
ways be true. It’s mathematically impossible for some obscure 
combination of income and loan amount to imply that repay-
ment probability decreases with income. That mathematical 
certainty means we can be confident that there is no hidden 
behavior lurking in the model. Our trust in the model is high. 
And we can use the numbers  A  and  B  to tell a borrower why 
we think they are unlikely to repay in precise but plain words 
(e.g., "Given your income, you are asking to borrow $1,000 too 
much.").

Let’s look at a tougher problem. Suppose we plot the longi-
tude and latitude of temperature sensors in a field, and mark 
with a check or cross whether the yield of corn was high or 
low (figure 3.4).

As you can see, there is no way to draw a straight line that 
separates the high-yield and low-yield areas of this field. That 
means it will be impossible to build an accurate and maximal-
ly interpretable linear model solely in terms of latitude and 
longitude.

The obvious thing to do in this particular case would be to 
"engineer" a feature that measured distance from the center of 
the field (which is a function of both longitude and latitude). It 
would then be simple to build a model in terms of that single 
derived feature. Feature engineering, however, is time-con-
suming and can require domain expertise. Let’s suppose we 

figure 3.3 Given a new data point, we can explain why it is clas-

sified the way it is.
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didn’t have the time or expertise. In that case we might grad-
uate from a linear model to a Support Vector Machine (SVM).

An SVM essentially automates the process of engineer-
ing our "distance from the center of the field" metric. It does 
this by distorting the 2D surface on which the points in the  

previous figure sit into three or more dimensions, until it is 
possible to separate the high- and low-yield areas of the field 
with a plane (figure 3.5).

This model will be accurate, but the distortion of the inputs 
means that it no longer operates in terms of our raw input fea-
tures. We cannot write down a simple equation like our loan 
repayment equation that allows us to say with confidence 
exactly how the model responds to changes in its inputs in 
all parts of the field. There is an equation, but it’s longer and 
more complicated. It has therefore become harder to give a 
simple explanation of why an area is predicted to have high 
or low yield. If a farmer wants to know whether moving to the 
west will increase yield, we have to answer that it depends on 

figure 3.5 The classification for the nonlinear crop data.
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figure 3.6 There is no longer a simple explanation for why a data 

point is classified the way it is.



30  The Challenge of Interpretability The Challenge of Interpretability  31

didn’t have the time or expertise. In that case we might grad-
uate from a linear model to a Support Vector Machine (SVM).

An SVM essentially automates the process of engineer-
ing our "distance from the center of the field" metric. It does 
this by distorting the 2D surface on which the points in the  

previous figure sit into three or more dimensions, until it is 
possible to separate the high- and low-yield areas of the field 
with a plane (figure 3.5).

This model will be accurate, but the distortion of the inputs 
means that it no longer operates in terms of our raw input fea-
tures. We cannot write down a simple equation like our loan 
repayment equation that allows us to say with confidence 
exactly how the model responds to changes in its inputs in 
all parts of the field. There is an equation, but it’s longer and 
more complicated. It has therefore become harder to give a 
simple explanation of why an area is predicted to have high 
or low yield. If a farmer wants to know whether moving to the 
west will increase yield, we have to answer that it depends on 

figure 3.5 The classification for the nonlinear crop data.

Latitude Longitude

Low yield High yield

Latitude

Longitude

Z

Low yield predicted High yield predicted

Latitude

Longitude

Item to be classified

figure 3.6 There is no longer a simple explanation for why a data 

point is classified the way it is.



32  The Challenge of Interpretability The Challenge of Interpretability  33

how far north you are. Our model’s internal structure is a step 
removed from the relatively intuitive raw input.

If we take one more step up in problem and model com-
plexity, the internal structure of the model gets still more re-
moved from the input. A neural network used to classify im-
ages does an exponentially large number of transformations 
similar to but more complex than the single one performed 
by an SVM. The equation it encodes will not only be very long, 
but almost impossible to reason about with confidence.

A random forest model is often used where the problem is 
hard and the main concern is accuracy. It is an ensemble, which 
means that it is in a sense a combination of many models. Al-
though the constituent models are simple, they combine in a 
way that makes it extremely difficult to summarize the global 

model concisely or to offer an explanation for a decision that 
is locally true. It is all but impossible to rule out the possibility 
that the model will exhibit nonsensical or dangerous behav-
ior in situations not present in the training data.

3.2 White-box Models

The least interpretable models, such as neural networks, 
are free to choose from an almost infinite menu of transfor-
mations of the input features. This allows them to divide up 
the classification space even if it is not linearly separable. New 
white-box models have a smaller menu of transformations to 
choose from. The menu offers a big boost in freedom to classi-
fy with accuracy, but is carefully chosen with interpretability 
in mind too. Generally speaking, this means that the model 
can be visualized or is sparse. Visualization is one of the most 
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Item to be classified

figure 3.7 More complex models create a space that is even more 

difficult to explain.
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powerful ways of immediately grasping how a model works. If 
it is not possible, then the model is much harder to interpret. 
Models that are sparse, meanwhile, are mathematically sim-
ple in a way that raises the possibility that they can be written 
down as a set of simple rules.

3.2.1 GAMs
Generalized additive models (GAMs) are a great example 

of this carefully controlled increase in model flexibility. As 
we saw earlier, a linear classification model assumes that the 
probability a given piece of data belongs to one class rather 
than another is of the form:

Ax + By + Cz

where the coefficients A, B, and C are just constant numbers, 
and  x ,  y , and  z  are the input features. A GAM allows mod-
els of the form:

f(x) + g(y) + h(z)

 
where f and g are functions. This model is "generalized" be-
cause the constant coefficients have been replaced with 
functions — in a sense, the constant coefficients are allowed 
to vary, which gives the model more flexibility. But it is "ad-
ditive" because the way in which  f(x) ,  g(y) , and  h(z)  are 
combined is constrained, which means the flexibility is not 
total. In particular, the functions  f ,  g , and  h  are each func-
tions of one of the features only, and the terms  f(x) ,  g(y) , 
and  h(z)  must be combined by simple addition.

This careful loosening of the constraints of linear models 
allows higher accuracy, but retains the ability to construct par-
tial dependence plots. These are simply graphs of  f(x) ,  g(y) , 
and  h(z)  that allow us to visualize the behavior of the mod-
el. These graphs can be examined to ensure that there are 
no dangerous biases lurking in the model or, if necessary, to 
demonstrate to a regulator that a model responds monotoni-
cally to a particular feature.3 

GA2Ms extend GAMs by allowing pairwise interactions, or 
models of the form:

f(x) + g(y) + h(z) + p(xy) + q(yz)

 
That is, they allow a tightly constrained version of the kind of 
feature engineering we saw in the field yield example earlier. 
There is in principle nothing to stop us introducing a model 
with another term,  r(xyz) , but GA2Ms stop here for a very 

3 f(x) is monotonic if it always increases when x increases.

figure 3.9 Partial dependence plots let you see the relationship 

between the prediction and key features.
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good reason: you can make a partial dependence plot of  p(xy)  
by drawing a heatmap, but it is extremely difficult to make a 
partial dependence plot of three variables. It is the partial de-
pendence plots that give the model its interpretability.

We’ve described a situation with just three features,  x ,  y , 
and  z . But it’s more common to have many more features. 
This raises the possibility of exponentially many pairwise 
terms. For example, with 50 features there are over a thou-
sand possible pairwise terms. Trying to inspect all these plots 
would diminish interpretability rather than enhancing it. For 
this reason, GA2Ms include only the  k  pairwise terms that 
most improve accuracy, where  k  is a small number deter-
mined like any other hyperparameter.4

4 See Lou et al. (2013), "Accurate Intelligible Models with Pairwise 

Interactions" (http://www.cs.cornell.edu/~yinlou/papers/lou-kdd13.

pdf), and the reference Java implementation (https://github.com/

yinlou/mltk).

3.2.2 Rule Lists
Rule lists are predictive models that learn simple flow 

charts from training data. The models are made up of sim-
ple  if...then...else  rules that partition the input data. 
These rules are the building blocks of rule lists. For example, 
it’s possible to predict survival of passengers on the Titanic us-
ing figure 3.11.

Rule lists are special cases of decision trees, where all the 
leaves are on the same side of the tree. As such, they are high-
ly interpretable.

Bayesian rule lists (BRLs)5 and falling rule lists (FRLs)6 are 
recent instantiations of this general approach. Given a cata-
log of rules learned from data, BRLs use a generative model 
to select a smaller subset of highly probable rules that best 
describe the data the rules were learned from. In the case of 

5 https://arxiv.org/abs/1511.01644

6 https://arxiv.org/abs/1411.5899

figure 3.10 Partial dependence plots with pairwise interactions.
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6 https://arxiv.org/abs/1411.5899

figure 3.10 Partial dependence plots with pairwise interactions.
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FRLs, the model is structured so that the selected rules are or-
dered by importance, which allows users to more easily iden-
tify the important characteristics.

Rule list methods are a good fit for categorical data. Nu-
merical data can be discretized, but if the statistical relation-
ships among input attributes are affected by discretization, 
then the decision rules learned are likely to be distorted.

3.2.3 SLIMs
The APGAR score for newborn infants (see 2.4 Explaining 

Decisions) is calculated by assigning scores of 0, 1, or 2 to five 
attributes of the baby and adding them up:

APGAR = appearance + pulse + grimace + activity +  

respiration

As we discussed, the fact that this score can be calculat-
ed quickly and reasoned about easily is an important feature. 
Scores like this are in widespread use in clinical medicine. But 
this extreme simplicity necessarily comes at the expense of 
accuracy.

In the same way GA2Ms use a tightly controlled freeing up 
of a linear classifier to increase accuracy, Supersparse Linear 
Integer Models (SLIMs)7 make a small change to scoring sys-
tems to increase their accuracy. That change is to permit each 
attribute to be multiplied by an integer coefficient. With this 
additional freedom, the APGAR score might become:

7 https://arxiv.org/abs/1502.04269

APGAR = 5 appearance + 3 pulse + 2 grimace + 7 activity 

+ 8 respiration

A score like this is almost as easy to work with as the orig-
inal APGAR score, and potentially hugely more accurate. The 
challenge is figuring out how to choose the numbers. SLIMs 
cast this problem as a supervised machine learning problem 
and use the tools of integer programming to ensure the coef-
ficients are round numbers.

3.3 Black-box Interpretability

If you won’t or can’t change your model, or you didn’t 
make it and don’t have access to its internals, white-box ap-
proaches are not useful. In this extremely common situation, 
you need an approach that allows you to interpret a black-box 

figure 3.12 New techniques can make highly accurate neural 

network algorithms much more interpretable.
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model. Thanks to recent research, this is not only possible, 
but relatively simple.

Until recently, the usual way to interpret a black-box model 
was to train two models: the uninterpretable, highly accurate 
model that you use in production, and a shadow interpretable 
model you use solely to learn about the system. The shadow 
model is trained not on real training data, but on simulated 
data generated by the uninterpretable, accurate model. It’s 
therefore a caricature of the truth and, at a high level, may 
capture some of the broad strokes of the model. By inspecting 
the interpretable shadow model, you can offer explanations.

The problem is that the shadow model is not only sim-
plistic by construction. Its explanations can be misleading 

in ways you have no easy way of knowing. Inferences drawn 
from it are dubious, and come with no statistical guarantees 
about how wrong they could be. Simply put, you can offer 
explanations for the production model’s decisions, but you 
have no way of knowing if those explanations are correct.8 
Additionally, you now need to build and maintain two models, 
which can be a significant engineering burden.

3.3.1 Perturbation
Perturbation is a model-agnostic interpretability tech-

nique that requires you to build and maintain only one model. 

8 One (anonymous) data scientist told us the interpretable twin 

model they use to explain their production model to clients is no 

better than "shadows on the cave wall."
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figure 3.13 A shadow model can be trained from more complex 

models.
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This is your production model. It can be as complicated and 
uninterpretable as is justified by your dataset and perfor-
mance requirements. Despite this, the strategy offers a more 
faithful description of the uninterpretable model than the 
interpretable shadow model technique described in the pre-
vious section.

The basic idea is simple, and is probably exactly what 
you’d do if you were asked to figure out how a black-box sys-
tem worked. The input is perturbed, and the effect of that per-
turbation on the output is noted. This is repeated many times, 

until a local understanding of the model is built up.
Let’s look at a real-world example of the application of 

this basic idea in its simplest, most manual form. The website 
Credit Karma offers a Credit Score Simulator. At first the sim-
ulator shows the user their current score. The user can then 
change one of the two dozen or so inputs, to see what the ef-
fect is. The natural thing to do is to try changing them all, one 
at a time, to see which has the biggest effect.

Credit score is a nonlinear model; two people can open the 
same new credit card and it can have very different effects on 
their credit score. This means it is impossible to summarize 
the model globally by saying something like "Lose 10 points 
per open credit card." But if a particular user of the Credit 
Score Simulator discovers their score goes down by 10 points 
when they propose opening a new credit card, that is a valid 
explanation of the behavior of the model locally, in the vicini-
ty of that user in feature space.
 
3.3.2 LIME

Local Interpretable Model-agnostic Explanation (LIME)9 
formalizes the perturbation technique described in the pre-
vious section. It’s exciting because it provides a simple meth-
od to interpret arbitrary black-box models. The algorithm 
is computationally simple, and the public reference imple-
mentation is a drop-in addition to many machine learning 
pipelines.

9 Ribeiro, Singh, and Guestrin (2016), "Why Should I Trust You?: 

Explaining the Predictions of Any Classifier" (https://arxiv.org/

abs/1602.04938).

figure 3.15 Credit Karma lets users see how changes affect their 

credit score.
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LIME takes as input a trained model and the particular ex-
ample whose classification you want to explain. It then ran-
domly perturbs the features of the example, and runs these 
perturbed examples through the classifier. This allows it to 
probe the surrounding feature space and build up a picture of 
the classification surface nearby.

It probes the classifier’s behavior in this way a few thou-
sand times, and then uses the results as training data to fit a 
linear model. The training examples are weighted by distance 
to the original example. The linear model can then be inter-
preted as usual to extract explanations like "You will decrease 
your credit score by 10 points if you open a credit card." These 
explanations are locally faithful; i.e., they are applicable in 
the region near the original example.

In a way, this approach is similar to the shadow model ap-
proach: the "true" model is used to generate training data for 

a simpler, interpretable model. But while the shadow model 
offers a supposedly global explanation that is wrong in un-
known ways, LIME offers a local explanation that is correct.

LIME is an exciting breakthrough. It’s an extremely simple 
idea (the preceding explanation glosses over mathematical 
detail, but is conceptually complete). It allows you to train a 
model in any way you like and still have an answer to the local 
question, "Why has this particular decision been made?" We 
used LIME to build the prototype for this report (4 Prototype).

3.3.3 Extensions and Limitations
LIME is well suited to tabular data. It perturbs categorical 

features by sampling from their distribution in the training 
data, and it perturbs continuous features by sampling from a 
normal distribution.

How to meaningfully perturb unstructured input such as 
images or text is less obvious. For text, the reference imple-
mentation offers two perturbation strategies. It can either 
delete words, or replace them with an unknown token. Using 
these strategies, the "local" region around the example is the 
set of trial documents made by omitting words from the orig-
inal. By running these trial documents through the black-box 
classifier, LIME can learn which words in the original docu-
ment are "responsible" for the original classification, and as-
sign them quantitative importances.

These importances can be used to label the words in a 
document that are "responsible" for its classification (by top-
ic, sentiment, etc.). Assuming the model is accurate, it is pre-
sumably relying on some of the same things a human read-
er is looking for. If you’re the author of the text, you might 

figure 3.16 LIME perturbs features to find a local linearly inter-

pretable space.
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therefore find it useful to know which parts of your writing 
are attracting the model’s attention. If you’re the creator of 
the model, you might find it reassuring (or alarming) to learn 
the words your model depends upon.

We applied LIME to a black-box text classifier and saw 
sensible results. The model, a recurrent neural network to 
classify text as clickbait or not, was truly a black box to us.10 
We found it online and deliberately avoided reading about its 
structure. Nevertheless, we were able to use LIME to probe it, 
and build up some trust that it was paying attention to reason-
able words.

The image perturbation strategy suggested by the creators 
of LIME is qualitatively similar. The image is divided up into 
high-level "superpixels," which are zeroed out at random 
during perturbation. The result is the same: an explanation 

10 https://github.com/saurabhmathur96/clickbait-detector

that says which part of the image is responsible for the behav-
ior of the black-box model.11

While LIME is designed with local explanation in mind, 
with enough explanations in hand, you can begin to build 
up in your head a global picture of the model. But doing this 
is like playing Battleship: you try examples at random, and 
dwell in interesting places when you find them. The creators 
of LIME also introduced SP-LIME, an algorithm to select a 
small number of well-chosen real examples from a dataset. 
The algorithm greedily selects examples whose explanations 
are as different as possible from each other. The result is a 
small number of examples that, along with their explana-
tions, give the big picture.12

11 Fong and Vedaldi (2017) recently proposed an image perturbation 

strategy that results in even better "explanations" (https://arxiv.org/

abs/1704.03296).

12 The code is not yet in the reference implementation of LIME, but 

can be found at https://github.com/marcotcr/lime-experiments/

blob/master/compare_classifiers.py.

figure 3.17 LIME explanations of clickbaitiness.
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figure 3.18 LIME superpixel explanations of the classification 

of an image of a dog playing a guitar. Figure from LIME paper 

(https://arxiv.org/abs/1602.04938).



46  The Challenge of Interpretability The Challenge of Interpretability  47

therefore find it useful to know which parts of your writing 
are attracting the model’s attention. If you’re the creator of 
the model, you might find it reassuring (or alarming) to learn 
the words your model depends upon.

We applied LIME to a black-box text classifier and saw 
sensible results. The model, a recurrent neural network to 
classify text as clickbait or not, was truly a black box to us.10 
We found it online and deliberately avoided reading about its 
structure. Nevertheless, we were able to use LIME to probe it, 
and build up some trust that it was paying attention to reason-
able words.

The image perturbation strategy suggested by the creators 
of LIME is qualitatively similar. The image is divided up into 
high-level "superpixels," which are zeroed out at random 
during perturbation. The result is the same: an explanation 

10 https://github.com/saurabhmathur96/clickbait-detector

that says which part of the image is responsible for the behav-
ior of the black-box model.11

While LIME is designed with local explanation in mind, 
with enough explanations in hand, you can begin to build 
up in your head a global picture of the model. But doing this 
is like playing Battleship: you try examples at random, and 
dwell in interesting places when you find them. The creators 
of LIME also introduced SP-LIME, an algorithm to select a 
small number of well-chosen real examples from a dataset. 
The algorithm greedily selects examples whose explanations 
are as different as possible from each other. The result is a 
small number of examples that, along with their explana-
tions, give the big picture.12

11 Fong and Vedaldi (2017) recently proposed an image perturbation 

strategy that results in even better "explanations" (https://arxiv.org/

abs/1704.03296).

12 The code is not yet in the reference implementation of LIME, but 

can be found at https://github.com/marcotcr/lime-experiments/

blob/master/compare_classifiers.py.

figure 3.17 LIME explanations of clickbaitiness.

figure 3.18 LIME superpixel explanations of the classification 

of an image of a dog playing a guitar. Figure from LIME paper 

(https://arxiv.org/abs/1602.04938).



48  The Challenge of Interpretability The Challenge of Interpretability  49

Finally, it’s important to note that the LIME approach has 
fundamental limitations. Whether it is used to explain a clas-
sifier of tabular, text, or image data, LIME gives explanations 
in terms of the raw input features. If those features are not in-
terpretable, then LIME will not help. For example, if the initial 
input to a model is an uninterpretable text embedding, LIME 
will not offer an explanation that makes sense to humans.

Also, as with any attempt to attribute causal relation-
ships to data, there are dangers of confusing correlation and 
causation. This risk, which exists throughout machine learn-
ing, is equally if not more acute when using LIME. It is easy 
to read LIME’s explanations as saying things like "This cable 
customer is going to churn because they do not have TV ser-
vice," which may be a misinterpretation. The risk of this is 
highest when when the supposed causal relationship seems 
to confirm your expectations.

Global black-box interpretation with FairML
FairML is an open source tool released by Julius Ade-

bayo when he was a member of the Fast Forward Labs 
team. It is similar to LIME in the sense that it probes a 
black-box model by perturbing input, but it provides a 
single global interpretation that assigns an importance 
to each feature. As with a shadow model, this may gloss 
over important details, but for the purposes of auditing 
a model for harmful global biases it is a great tool. For 
example, it can be used to measure the extent to which a 
model depends on "protected features" that, from a legal 
and ethical point of view, should make no difference to 
its output (see 6 Ethics and Regulation). A more detailed 

introduction to FairML is available on the Fast Forward 
Labs blog.13 

13 http://blog.fastforwardlabs.com/2017/03/09/fairml-auditing 

-black-box-predictive-models.html
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chapter 4
Prototype

In order to bring interpretability to life, we chose to focus 
our prototype on LIME’s ability to explain individual algorith-
mic decisions.

Alongside the rate at which a business acquires customers, 
the rate at which it loses them is perhaps the most import-
ant measure of its performance. Churn is well defined for an 
individual customer in a subscription business. This makes 
it possible to collect training data that can be used to train a 
model to predict whether an individual customer will churn. 
Our prototype uses LIME to explain such a model.

If the relationship between the attributes of a custom-
er and their churning is causal, and the model that predicts 
churn from these attributes is accurate, LIME raises an inter-
esting possibility. If you can explain the model’s prediction for 
a customer, you can learn why the customer is going to churn, 
and perhaps even intervene to prevent it from happening.

Establishing a causal relationship can be tricky, and not 
all attributes can be changed. In such cases it may not make 
sense or be possible to intervene. For example, if a model pre-
dicts a customer is going to churn because they are over a cer-
tain age, there’s not much you can do about it. But even if it’s 
not possible to intervene, the ability to group customers ac-
cording to the attributes that are most concerning is a power-
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these perturbed variations through the classifier. This allows 
LIME to probe the behavior of the classifier in the vicinity of 
the example, and thus to build up a picture of exactly how im-
portant each feature is to this example’s classification.

Before it can do this, LIME needs to see a representative 
sample of training data to build an "explainer" object. It uses 
the properties of this sample to figure out the details of the 
perturbation strategy it will eventually use to explain an in-
dividual classification. This process is a little fiddly in the 
reference implementation that we used,2 because it requires 
some bookkeeping information about categorical features. 
But once the explainer has been instantiated it can be saved 
for future use, alongside the model.

The explainer then requires two things to explain an in-
dividual classification: the features of the example to be ex-
plained, and the classifier (in the form of a function that takes 
the features as input and returns a probability).

This yields an "explanation" for a given example and class, 
which is just a list of weights or importances for all or a subset 
of the features. These are a measure of the sensitivity of the 
classifier to each feature, in the local region of the particular 
example. A large positive number means that the particular 
feature contributes a lot toward the example’s current classi-
fication. A large negative number, on the other hand, means 
that a feature’s value implies that the example belongs in a 
different class. Numbers close to zero indicate that a feature 
is unimportant.

This code will give us a list of  (feature, importance)  tuples:

2 https://github.com/marcotcr/lime

ful way to introspect a business. It may bring to light groups of 
customers you want to focus on, or weaknesses in the product.

Using the churn model in this way depends on it being 
interpretable, but a complicated business with thousands of 
customers, each of whom it knows a lot about, may need a 
model using techniques such as uninterpretable random for-
ests or neural networks.

This is a job for model-agnostic interpretability. By apply-
ing LIME to an arbitrarily complicated model, we can have it 
both ways: an accurate model describing an intrinsically com-
plicated dataset, that is also interpretable.

4.1 Customer Churn
We used a public dataset of 7,043 cable customers, around 

25% of whom churned.1 There are 20 features for each cus-
tomer, which are a mixture of intrinsic attributes of the per-
son or home (gender, family size, etc.) and quantities that 
describe their service or activity (payment method, monthly 
charge, etc.).

We used  scikit-learn  to build an ensemble voting classi-
fier that incorporated a linear model, a random forest, and a 
simple neural network. The model has an accuracy of around 
80% and is completely uninterpretable.

4.2 Applying LIME
As described in 3.3.2 LIME, LIME explains the classification 

of a particular example by perturbing its features and running 

1 https://www.ibm.com/communities/analytics/watson-analyt 

ics-blog/predictive-insights-in-the-telco-customer-churn-data-set/
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ber of perturbations below the standard 5,000 to speed 
this up if necessary.

We wrapped our dataset,  scikit-learn  classifier, and 
LIME explainer in a standard Python Flask web API. This al-
lows frontend applications to get customer data, the corre-
sponding churn probabilities, and the LIME explanations for 
those probabilities.

4.3 Product: Refractor

4.3.1 The Product Possibilities of Interpretability
As the use of machine learning algorithms increases, the 

need to understand them grows as well. This is true at both 
a societal and a product level. As algorithms enter into our 
workplaces and workflows, they appear mysterious and a bit 
intimidating. Their predictions may be precise, but the util-
ity of those predictions is limited if we cannot understand 
how they were reached. Without interpretability, algorithms 
are not great team players. They are technically correct but 
uncommunicative.

Interpretability opens up opportunities for collaboration 
with algorithms. During their development, it promises bet-
ter processes for feature engineering and model debugging. 
After completion, it can enhance users' understanding of the 
system being modeled and advise on actions to take.

For our prototype, we wanted to explore how that collabo-
ration through interpretability might look. We chose an area, 
churn probability for customers of an Internet service provid-
er, where the collaboration payoff is high. Making the churn 

from lime.lime_tabular import LimeTabularExplainer

explainer = LimeTabularExplainer(

  training_data=X,

  training_labels=y,

  feature_names=feature_names,

  class_names=class_names

)

# clf is the churn classifier we want to explain

e = explainer.explain_instance(customer, 

  clf.predict_proba)

print(e.as_list())

For our use case, we are interested in the features with the 
largest positive importances, which tell us which features are 
most responsible for the model thinking the customer will 
churn.

Computational resources
In order to comprehensively probe the area around 

an example, LIME needs to perturb every feature, and 
then build a linear model with the same features. This 
means the time it takes to construct an explanation is 
most sensitive to the number of features in the data.3 

 In our tests LIME explained a classification of our model, 
which had 20 features, in around 0.1s on a commodity 
PC. This allowed for a responsive user interface. We also 
applied our prototype to a proprietary churn dataset with 
100 features. That increased the time required for an ex-
planation to 1s on the same hardware. We could have in-
creased the power of the hardware or reduced the num-
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The intuitive feel a user builds up from scrolling through 
the highlighted features depends on our ability to recognize 
patterns and develop models in our heads that explain those 
patterns, a process that mirrors some of the work the comput-
er model is doing. In a loose sense, you can imagine that the 
highlighted features give you a glimpse of how the model sees 
the data — model vision goggles. This view can help us bet-
ter debug, trust, and work with our models. It is important to 
keep perspective, however, and remember that the highlight-
ed features are an abstracted representation of how the model 
works, not how it actually works. After all, if we could think at 
the scale and in the way the model does, we wouldn’t need the 
model in the first place.

figure 4.1 The global table displays the churn precision (calcu-

lated by the model) and highlights in red and blue the impor-

tance of different features in making that prediction (as calcu-

lated by LIME). Columns can be sorted by value to explore the 

relationships across customers.

prediction is the kind of problem machine learning excels at, 
but without an understanding of what features are driving 
the predictions, user trust and ability to take action based on 
the model are limited. With interpretability, we can break out 
of those limitations.

Our prototype, Refractor, guides you through two levels 
of interpretability, from a global table view of customers to 
an exploration of the effects of different features on an indi-
vidual user. The process of building the prototype was also a 
movement between, and eventually a balancing of, those two 
levels.

4.3.2 Global View: Understanding the Model
LIME is focused on local explanation of feature impor-

tance through feature perturbation. It may initially seem a 
strange choice, then, to use it in a globally oriented view. The 
stacked local interpretations, however, coalesce into a pow-
erful global representation of how the algorithm works. For 
many complex algorithms, this is the only kind of global view 
you can have.

Machine learning models are powerful because of their 
ability to capture nonlinear relationships. Nonlinear relation-
ships cannot be reduced to global feature importance without 
significant information loss. By highlighting local feature im-
portance within a table view, you do see important columns 
begin to emerge, but you can also observe patterns, like dis-
continuities in a feature’s importance, that would have to be 
averaged out if feature importance was globally calculated.

The table, as a sort of global view of local interpretabili-
ty, highlights how interpretability depends on collaboration. 
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how the probability changed (as described earlier in the Cred-
it Karma example), but it would be a long and tedious process.

The implicit recommendations of the feature checklist are 
built upon with further information. The recommendation 
side panel highlights the top three "changeable" features (e.g., 
not a customer’s age) and uses the model to calculate the per-
cent reduction in churn probability that changing each fea-
ture would have.

As the user follows these recommendations, or explores 
by changing other feature values for the individual customer, 
we not only calculate the new churn prediction, we also cal-
culate the weights based on the new feature set. This ability 
to change one feature value and see the ripple effect on the 
importance of other features helps the user build up an intui-
tive feeling of how the model works. In the case of a customer 
service representative with an accurate model, that intuitive 
understanding translates to an ability to act off of its insights.

figure 4.3 The recommendation sidebar highlights the top possi-

ble churn reduction actions.

4.3.3 Local View: Understanding the Customer
While the table view is a powerful interface, it can feel 

overwhelming. For this prototype, we wanted to complement 
it with an individual customer view that would focus on ac-
tions you could take in relation to a specific customer.

Free of the table, we are now able to change the displayed 
feature order. The obvious move is to sort the features by their 
relative importance to the prediction. In the vertical orienta-
tion, this creates a list of the factors most strongly contribut-
ing to the customer’s likelihood of churning. For a customer 
service representative looking for ways to decrease the chance 
the customer will leave, this list can function as a checklist of 
things to try to change.

Because this sorting is an obvious move, it’s easy to un-
dervalue its usefulness. It is worth remembering that without 
LIME (or a different interpretability strategy), the list would 
remain unsorted. You could manually alter features to see 

figure 4.2 The individual customer view shifts the focus from 

comparisons across customers to one particular customer.
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sentative, this recommendation panel could be the primary 
view, but providing it alongside the full feature list helps the 
user feel like they’re on stable ground. The context provides 
the background for users to take more focused action.

4.3.5 Collaborating with Algorithms
Trust is a key component of any collaboration. As algo-

rithms become increasingly prevalent in our lives the need 
for trust and collaboration will grow. Interpretability strat-
egies like LIME open up new possibilities for that collabora-
tion, and for better and more responsible use of algorithms. 
As those techniques develop they will need to be supported by 
interfaces that balance the need for context with a focus on 
possible actions.

figure 4.4 Early interface experiments displayed only the top 

three features for each customer. The view was focused but pro-

vided the user with less context to understand the model.

4.3.4 Product Tension: Focus vs. Context
As we developed the global and local interfaces of the 

prototype, we constantly engaged with a tension between 
providing the user with context and providing a focused and 
directed experience. This tension will arise any time you are 
adding interpretability to a model, and requires careful con-
sideration and thought about the purpose of your product.

In the early stages of prototype development we kept all 
of the features visible, using color and ordering to emphasize 
those with higher importances. As we probed how a consum-
er product using LIME might work, we explored only showing 
the highest-importance features for each customer. After all, 
if you’re a customer service representative concerned with 
convincing a user to stay, why would you need to know about 
features that, according to the model, have no discernible ef-
fect on the churn prediction?

We experimented with interfaces emphasizing just the 
top features, and they did have the benefit of being more 
clear and focused. However, the loss of context ended up de-
creasing the user’s trust and understanding of the model. The 
model went back to feeling more black box-like. Being able to 
see which factors don’t make contributions to the prediction 
(for example, gender) and checking those against your own 
intuitions is key to trusting the features that are rated of high 
importance.

Having seen the importance of context, we decided to fo-
cus our prototype on that, while also dedicating some space to 
a more focused experience. In the individual view, this means 
that along with the full list of features we show the more tar-
geted recommendation panel. For a customer service repre-
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chapter 5
Landscape

In this chapter we discuss specific real-world applications 
of interpretability, based on interviews with working data sci-
entists. We also assess the offerings of vendors who aim to 
help data scientists and others build interpretable models.

5.1 Interviews
In our interviews and discussions with data organizations 

where interpretability is a concern, we found that most chose 
white-box models in order to maintain interpretability. These 
companies are so concerned with knowing how a model pro-
duced a given result that they are willing to potentially trade 
off the accuracy of the result.

Some companies using black-box models were unwilling 
to provide details about interpretability, or the applications of 
their models. We suspect that their unwillingness to discuss 
may be rooted in regulatory concerns. Specifically, at least un-
til there are regulatory rulings to bring certainty, it remains 
unclear whether a black box-compatible tool such as LIME is 
sufficient to meet regulations requiring explanation of model 
behavior.



62  Prototype Landscape  63

 
 
 
chapter 5
Landscape

In this chapter we discuss specific real-world applications 
of interpretability, based on interviews with working data sci-
entists. We also assess the offerings of vendors who aim to 
help data scientists and others build interpretable models.

5.1 Interviews
In our interviews and discussions with data organizations 

where interpretability is a concern, we found that most chose 
white-box models in order to maintain interpretability. These 
companies are so concerned with knowing how a model pro-
duced a given result that they are willing to potentially trade 
off the accuracy of the result.

Some companies using black-box models were unwilling 
to provide details about interpretability, or the applications of 
their models. We suspect that their unwillingness to discuss 
may be rooted in regulatory concerns. Specifically, at least un-
til there are regulatory rulings to bring certainty, it remains 
unclear whether a black box-compatible tool such as LIME is 
sufficient to meet regulations requiring explanation of model 
behavior.



64  Landscape Landscape  65

particularly when denying a customer credit, it is necessary 
to explain the basis for the credit decision. Traditionally this 
is done with simple models that are inherently interpretable. 
Technologies like LIME permit the use of more complex and 
potentially more accurate models while preserving the abili-
ty to explain the reasons for denial or assigning a particular 
score. The ethical considerations associated with these kinds 
of decisions are discussed in 6 Ethics and Regulations.

5.1.3 Customer Churn
As we demonstrate with our prototype, churn modeling is 

another clear case for interpretability. Knowing when a user 
is likely to defect is helpful on a number of levels. It’s useful 
for predicting revenue streams, testing effectiveness of pro-
motions or marketing campaigns, and evaluating customer 

Probabilistic
Programming

Report Recommender

Our algorithm recommends 
you read Probabilistic 
Programming by Fast 
Forward Labs.

Recommendation

Because you read 
Interpretability and are 
interested in new 
technologies.

Explanation

figure 5.2 Model interpretation can be used to explain product 

recommendations.

5.1.1 Recommendation Engines
Recommendations are a straightforward, relatively low-

risk, user-facing application of model interpretation. In the 
case of product recommendations, users may be curious why 
a certain item was recommended. Have they purchased simi-
lar products in the past? Did people with similar interests pur-
chase that product? Do the recommended products share cer-
tain features in common? Are the products complementary? 
Or is there some other reason? This explanation builds trust 
with the users (especially if the recommendations are good!) 
by showing them what’s happening behind the scenes.

5.1.2 Credit Scores
Customer credit evaluation uses interpretable models 

extensively. When evaluating a customer’s credit score, and 

Companies for whom
interpretability is a 
priority are currently 
choosing models that 
trade interpretability 
for accuracy.

Accuracy

Interpret-
ability

Linear Regression

Decision Trees

Random Forests

Neural Networks

SVMs

figure 5.1 Currently, companies concerned with interpretability 

trade accuracy for higher interpretability. Technologies like 

LIME could change that.
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for predicting revenue streams, testing effectiveness of pro-
motions or marketing campaigns, and evaluating customer 

Probabilistic
Programming

Report Recommender

Our algorithm recommends 
you read Probabilistic 
Programming by Fast 
Forward Labs.

Recommendation

Because you read 
Interpretability and are 
interested in new 
technologies.

Explanation

figure 5.2 Model interpretation can be used to explain product 

recommendations.

5.1.1 Recommendation Engines
Recommendations are a straightforward, relatively low-

risk, user-facing application of model interpretation. In the 
case of product recommendations, users may be curious why 
a certain item was recommended. Have they purchased simi-
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tain features in common? Are the products complementary? 
Or is there some other reason? This explanation builds trust 
with the users (especially if the recommendations are good!) 
by showing them what’s happening behind the scenes.

5.1.2 Credit Scores
Customer credit evaluation uses interpretable models 

extensively. When evaluating a customer’s credit score, and 

Companies for whom
interpretability is a 
priority are currently 
choosing models that 
trade interpretability 
for accuracy.

Accuracy

Interpret-
ability

Linear Regression

Decision Trees

Random Forests

Neural Networks

SVMs

figure 5.1 Currently, companies concerned with interpretability 

trade accuracy for higher interpretability. Technologies like 

LIME could change that.
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5.1.5 Anomaly Detection
Predictive models can be used to predict failures in a vari-

ety of systems, including computer systems and networks, or 
even mechanical systems or industrial plants. Airlines have 
used such models to schedule maintenance on airplane en-
gines that are predicted to have trouble. This is helpful, but 
interpretable models can identify the reason a system is likely 
to experience a failure and suggest targeted interventions to 
remedy, mitigate, or entirely prevent the problem. Fed back 
into the system, this understanding can suggest improve-
ments to the design of more robust new systems.

figure 5.3 Interpretation can be used to identify possible causes 

of a prediction of engine failure.

service efficacy. Interpretation of churn models compounds 
their utility. For example, as shown in our prototype (4 Pro-
totype), interpretation of churn data can explain why a given 
customer or set of customers are likely to churn. This infor-
mation offers customer service personnel the ability to retain 
more customers by helping them identify those who may be 
considering taking their business elsewhere and offering in-
sights into the reasons driving that prediction. Armed with 
this knowledge, the representative can offer a customer a 
promotion or better-suited product and improve the chance 
of their staying.

5.1.4 Fraud Detection
Predictive models can help identify fraudulent activities 

such as credit or bank transactions, or insurance claims. Flag-
ging these transactions creates a high-risk list for risk man-
agement personnel (or criminal activity investigators, includ-
ing police) to investigate further. Models that provide deeper 
understanding than a simple fraud flag or likelihood indi-
cator and show investigators the reasons a transaction was 
flagged can lead to improvements in resource allocation and 
greater effectiveness in catching fraudsters. This additional 
context can help investigators to dismiss some flagged trans-
actions as appropriate, quickly eliminating false positives and 
enabling them to focus investigative resources elsewhere. It 
may also help them to plan investigations, providing hints on 
where to look for evidence.
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• Easy access to scalable computing resources (e.g., CPUs, 
GPUs)

• Management and customization of the compute environ-
ment, software distributions, libraries

• Access to open source tools and libraries (e.g., Python, R, 
scikit-learn)

• Data exploration and experimentation
• Code, model, and data versioning
• Path from prototype to model deployment
• Monitoring tools for deployed solutions
• Collaboration, communication, and discovery tools

Domino Data Lab’s service, for example, does not include 
off-the-shelf interpretability solutions, but it is nevertheless a 
high-quality data science platform.1

Still, as we emphasize throughout this report, interpret-
ability is an important consideration. As trained data sci-
entists become less involved in model selection, training, 
and deployment, we need tools to enable us to trust models 
trained automatically or by non-experts. The following offer-
ings stand out for their interpretability solutions.

5.2.1 H2O.ai
H2O.ai (https://www.h2o.ai/; Mountain View, CA; found-

ed 2011; Series B Nov 2015) provides an open source platform 
for data science, including deep learning, with an enterprise 
product offering. The developers summarized their knowl-

1 For a recent complete list of data science platforms, see http://

www.kdnuggets.com/2017/02/gartner-2017-mq-data-science-plat 

forms-gainers-losers.html.

5.1.6 Healthcare
Models that support diagnosis or treatment must be in-

terpretable in order to be safe. The danger of subtle problems 
with training data is particularly acute because ethical con-
straints make it difficult to modify or randomize care in or-
der to collect unbiased data. The requirement to "do no harm" 
can only be fulfilled with certainty if the model is understood. 
And as in the case of churn analysis, good models whose de-
cisions can be explained offer hints toward (or even outright 
instructions for) the best next steps for a given case.

5.2 Data Science Platforms
White-box models are interpretable by design. At the time 

of writing of this report, there were no vendors focused on 
providing interpretability solutions for black-box models. In-
terpretability-as-a-service is not available (yet), but it is a ca-
pability within some data science platforms.

Data science platforms seek to provide one central place 
for data science work within an organization. They prom-
ise to increase collaboration and cross-pollination within 
and across teams, as well as building transparency into data 
science work. They aim to offer infrastructure and software 
solutions to common bottlenecks in the data science work-
flow that quickly deliver reliable, reproducible, and replicable 
results to the business. Some data science platforms aspire to 
enable non-data scientists (e.g., software engineers, business 
analysts, executives) to do data science work.

Platforms should therefore be evaluated on their solutions 
to common bottlenecks in the entire data science workflow. 
In addition to interpretability, these include:
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algorithm. The company provides robust solutions for both 
global and local interpretability as part of its data science plat-
form and services offering. We welcome its decision to open-
source Skater, a meaningful contribution to the data science 
community.

5.2.3 DataRobot
DataRobot (https://www.datarobot.com/; Boston, MA; 

founded 2012; Series C March 2017) provides a data science 
platform with the ambition to automate the data science 
workflow, from data exploration to model deployment, to 
enable data scientists and non-data scientists alike to build 
predictive models. DataRobot provides tools to estimate the 
maximal correlation between continuous features and target 
variables, allowing us to measure the strength of linear and 
nonlinear relationships between continuous variables. For 
continuous and categorical target variables, DataRobot al-
lows us to construct partial dependence plots. Word clouds 
visualize the relative importance of individual words to the 
decisions of a given algorithm. Finally, DataRobot includes 
implementations of white-box algorithms, including the 
RuleFit algorithm.4

A current limitation to DataRobot’s interpretability solu-
tions is that word clouds and partial dependence plots cannot 
capture complex relationships between sets of variables and 
their combined impact on the target variable. Likewise, the 
white-box algorithm RuleFit is not always be the best algo-
rithmic choice for a given machine learning use case.

4 http://statweb.stanford.edu/~jhf/ftp/RuleFit.pdf

edge and offering with regard to interpretability in "Ideas on 
Interpreting Machine Learning," a white paper published by 
O’Reilly.2 Their work includes a twist on LIME called k-LIME. 
k-LIME trains k linear models on the data, with k chosen to 
maximize R2 across all linear models. This approach uncovers 
regions in the data that can be modeled using simpler linear, 
interpretable models, offering a solution that sits comfortably 
between global and local interpretability.

Of all the platforms evaluated for this report, H2O’s devel-
opers have thought the most extensively about interpretabil-
ity and how to best explain complex, nonlinear relationships 
between inputs (i.e., features) and outputs (i.e., labels). In 
addition, they are actively working on novel solutions to aid 
data exploration and feature engineering, including visual-
ization tools to help humans, who are adapted to perceive a 
three-dimensional world, understand relationships in high-
er-dimensional spaces.

5.2.2 DataScience.com
DataScience.com (https://www.datascience.com/; Culver 

City, CA; founded 2014; Series A Dec 2015) released its data 
science platform in October 2016 and Skater,3 a Python li-
brary for model interpretation, in May 2017. Skater includes 
implementations of partial dependence plots and LIME. The 
team at DataScience.com developed their own in-house sam-
pler for LIME with the aim of improving the efficiency of the 

2 https://www.oreilly.com/ideas/ideas-on-interpreting-ma-
chine-learning
3 https://www.datascience.com/resources/tools/skater
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5.2.4 Bonsai
Unlike all the other companies covered in this section, 

Bonsai (https://bons.ai/; Berkeley, CA; founded 2014; Series A 
May 2017) does not offer a data science platform but rather 
a platform to develop interpretable models to increase auto-
mation and efficiency of dynamic industrial systems (e.g., ro-
botics, warehouse operations, smart factories) based on deep 
reinforcement learning.

Bonsai aims to build an interpretable solution, and to 
speed up the training of models, by asking humans to guide 
the algorithm as it learns. Specifically, humans need to iden-
tify the key subtasks and determine the best order in which 
to perform these in order for the algorithm to achieve mas-
tery; that is, humans need to identify the best learning path.5 
According to the Bonsai developers, this approach allows the 
algorithm to train faster by leveraging human knowledge to 
reduce the search space for the solution. It also ensures that 
human concepts map onto machine-solvable tasks, thereby 
facilitating an intuitive understanding of the capabilities of 
the algorithm. In a sense, the Bonsai platform forces models 
to "think like us," to use similar subtasks or concepts in prob-
lem solving — a different but intriguing approach to inter-
pretability than that covered in this report.6 

5 See Bengio et al. (2009), "Curriculum Learning" (http://dl.acm.

org/citation.cfm?id=1553380).

6 AlphaGo, an AI Go player, can not only beat humans at Go. Accord-

ing to some players, it seems to use fundamentally different concepts 

and strategies than humans. The approach taken by Bonsai would 

nudge AlphaGo to "think" more like human players.

Ethics and Regulations  73

 
 
 
chapter 6
Ethics and Regulations

We’ve already touched on some of the reasons why inter-
pretability is essential to ensure the application of machine 
learning is not dangerous, discriminatory, or forbidden by 
regulations. In this chapter we’ll discuss this in more detail.

6.1 Discrimination
The issue of discrimination is intimately tied up with in-

terpretability. Protected classes have suffered (and continue 

??????
Regulation 457

Explain why your 
model is predicting 
the things it 
predicts.

figure 6.1 Regulations can require information about how 

a model works. If your model is uninterpretable you will be 

unable to comply.
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pact as a "selection rate [for employment] of a protected class 
that is less than 4/5 the rate for the group with the highest 
rate." An organization can claim that a procedure is "busi-
ness-related" if it correlates with improved performance at p 
< 0.05. This might be true if, for example, a graduate degree 
is required, since members 
of certain protected classes 
are less likely to hold such 
degrees. The EEOC must 
then argue that there is a 
less disparately impactful 
way to achieve the same 
goal (e.g., the employer 
could use an aptitude test 
rather than require a PhD).

The previous paragraph 
raises many specific ques-
tions. What is the selection 
rate as a function of pro-
tected class membership? 
Is there a correlation be-
tween class membership 
and job performance? Does 
there exist a quantifiably less disparately impactful alterna-
tive to the current procedure? A conscientious model builder 
should be able to answer these questions, but that is difficult 
or impossible if the model is uninterpretable.

As another example, consider Section 609(f)(1) of the Fair 
Credit Reporting Act. This requires that consumers be pro-
vided "all of the key factors that adversely affected the credit 

Fair Credit Reporting 
Act

... [The consumer shall 
be provided] all of the 
key factors that 
adversely affected the 
credit score of the 
consumer in the model 
used, the total number 
of which shall not 
exceed 4 ...

figure 6.2 The Fair Credit 

Reporting Act requires the con-

sumer be informed about key 

factors.

to suffer) discrimination in sensitive situations such as em-
ployment, lending, housing, and healthcare. Decisions in 
such areas are increasingly made by algorithms. Legislation 
such as the US Civil Rights Act therefore directly impacts ma-
chine learning (see The legal landscape). Complying with leg-
islation is the least we can do: ethical concerns should also 
constrain our use of machine learning. And of course, it is of-
ten good business to build a product that serves as many peo-
ple as possible. A product that depends on a discriminatory 
model suffers in this regard.

The legal landscape
The legal landscape is complex and fast-moving. Here 

are a few of the relevant regulations:
• Civil Rights Acts of 1964 and 1991
• Americans with Disabilities Act
• Genetic Information Nondiscrimination Act
• Equal Credit Opportunity Act
• Fair Credit Reporting Act
• Fair Housing Act
• Federal Reserve SR 11-7 (Guidance on Model Risk 

Management)
• European Union General Data Protection Regulation, 

Article 22 (see GDPR Article 22 and the right to an 
explanation)

To make this discussion a little more concrete, let’s consid-
er a specific context in the United States. The Equal Employ-
ment Opportunity Commission (EEOC), which derives much 
of its authority from the Civil Rights Act, defines disparate im-
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It considers the issues touched upon in this chapter 
throughout.

6.2 Safety
Algorithms must be audited and understood before they 

are deployed in contexts where injury or death is a risk, in-
cluding healthcare (as discussed in 2.2 Enhancing Trust, and 
5.1.6 Healthcare) and driverless vehicles. Deep understanding 
of an algorithm may be necessary not only to reduce its phys-
ical danger, but also to reduce legal risk to the owner of the 
algorithm.

There is also a social obligation (and market incentive) 
to explain these high-stakes algorithms to society. The 2016 
IEEE white paper "Ethically Aligned Design"3 puts it well: "For 
disruptive technologies, such as driverless cars, a certain level 
of transparency to wider society is needed in order to build 
public confidence in the technology."

The financial system is a special case. While there is not 
an immediate physical danger, the potential consequences 
of badly behaved algorithms are potentially grave and global. 
With this in mind, the financial services industry in the Unit-
ed States is bound by SR 11-7, Guidance on Model Risk Man-
agement,4 which among other things requires that model be-
havior be explained.

3 http://standards.ieee.org/develop/indconn/ec/ead_v1.pdf

4 https://www.federalreserve.gov/supervisionreg/srletters/sr1107.

htm

score of the consumer in the model used, the total number of 
which shall not exceed 4." Again, it may be impossible to ful-
fill this requirement if the model is uninterpretable.

When discrimination is the result of an algorithmic deci-
sion, it can be difficult for those affected by the decision, the 
regulator, or the organization that deployed the algorithm to 
determine the reason (or even to confirm whether discrimina-
tion took place). Techniques that ensure interpretability, such 
as those discussed in 3 The Challenge of Interpretability, are 
essential to ensure we build models that do not discriminate 
and that therefore comply with the law, are ethical, and are 
good for our businesses.

Resources on algorithmic discrimination
• Barocas and Selbst (2016), "Big Data’s Disparate 

Impact."1 This clearly written and well-organized 
non-technical paper focuses on the practical impact 
of discriminatory algorithms. Part A is an invaluable 
list of all the ways in which an algorithm can be dis-
criminatory. Parts B and C pay particular attention to 
the status and future of US law.

• O’Neil (2016), Weapons of Math Destruction: How 
Big Data Increases Inequality and Threatens Democ-
racy (Crown Random House).2 O’Neil’s book is a 
wide-ranging polemic that we highly recommend  
to anyone who works with data scientists, or is one.  
 

1 https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2477899

2 https://weaponsofmathdestructionbook.com/
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3 http://standards.ieee.org/develop/indconn/ec/ead_v1.pdf

4 https://www.federalreserve.gov/supervisionreg/srletters/sr1107.

htm
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• O’Neil (2016), Weapons of Math Destruction: How 
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racy (Crown Random House).2 O’Neil’s book is a 
wide-ranging polemic that we highly recommend  
to anyone who works with data scientists, or is one.  
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ommend the clear, practical article "How to Comply with 
GDPR Article 22" by Reuben Binns.9

6.3 Negligence and Codes of Conduct
Professions like medicine and civil engineering have 

codes of conduct that are either legally binding or entrenched 
norms. To not follow them is considered negligent or in-
competent. The relatively immature professions of software 
engineering and data science lag a little in this area, but are 
catching up. We think and hope that applying the techniques 
discussed in this report will become a baseline expectation 
for the competent, safe, and ethical application of machine 
learning. Indeed, the IEEE and ACM have both recently pro-
posed community standards that address precisely the topic 
of this report.

The 2016 IEEE white paper "Ethically Aligned Design"10 is 
unambiguous in its assertion that ensuring transparency is 
essential to users, engineers, regulators, the legal system, and 
society in general. To this end, the organization has estab-
lished a working group to define a formal professional stan-
dard, "IEEE P70001: Transparency of Autonomous Systems."11 
This standard may become a familiar Request for Proposal 
(RFP) requirement, like the equivalent ISO standards on secu-
rity and data protection.

The ACM’s 2017 Statement on Algorithmic Transparency 
is non-binding but similarly clear: "systems and institutions 

9 http://www.reubenbinns.com/blog/how-to-comply-with-gd 

pr-article-22-automated-credit-decisions/

10 http://standards.ieee.org/develop/indconn/ec/ead_v1.pdf

11 https://standards.ieee.org/develop/project/7001.html

GDPR Article 22 and the right to an explanation
The European Union’s General Data Protection Reg-

ulation will apply in the EU from May 2018.5 There has 
been much debate about the intentions and practical 
consequences of this wide-ranging regulation. A 2016 
paper created considerable excitement and concern 
by arguing that Article 22 "creates a right to explanation, 
whereby a user can ask for an explanation of an algorith-
mic decision that was made about them."6 Without the 
careful application of approaches such as LIME to craft 
user-friendly explanations in plain words, such a regula-
tion would seem to make it illegal to apply random forests 
and neural networks to data concerning the 500 million 
citizens of the EU. A response with the unambiguous title 

"Why a Right to Explanation of Automated Decision-Mak-
ing Does Not Exist in the General Data Protection Regu-
lation"7 rejected this interpretation, conceding only that 
the regulations create a right to an "explanation of sys-
tem functionality." This view is consistent with that of 
a global accounting firm we talked to while writing this 
report, but there is lack of consensus.8 Hopefully things 
will become clearer when the regulation comes into 
force; in the meantime, for further information we rec-

5 http://www.privacy-regulation.eu/en/22.htm

6 https://arxiv.org/abs/1606.08813

7 https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2903469

8 The UK’s decision to leave the EU further complicates things in that 

jurisdiction. See paragraphs 43-46 of the UK House of Commons Sci-

ence and Technology Committee report Robotics and Artificial Intelli-

gence for the current UK government position (http://bit.ly/2urMtJr).
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that use algorithmic decision-making are encouraged to pro-
duce explanations regarding both the procedures followed by 
the algorithm and the specific decisions that are made. This is 
particularly important in public policy contexts."12 

12 http://www.acm.org/binaries/content/assets/public-policy/2017_

usacm_statement_algorithms.pdf
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As discussed in 6.2 Safety, our comfort with machine learn-
ing is dependent on the extent to which we feel as though we 
understand how it works. Natural language explanations will 
be invaluable in gaining support for machine learning in wid-
er society, amongst those who might find the raw output of 
something like LIME hard to understand.

Regulated industries like finance are among the most 
competitive, so the potential upside of deploying the best 
models in such industries is huge. But as we have seen, the 

"best" (most accurate) models are often the least interpretable. 
Model-agnostic interpretation promises to open a floodgate 
that allows the most accurate models to be used in situations 
where previously it had not been possible because of regula-
tory constraints.

Credit
Approval
Algorithm

Output

You’ve been
rejected!

Input

Your credit
application.

Model-
Agnostic

Interpretability

Output

Your application has been denied 
because your debt to income ratio 
is too high. Pay off 20% of your debt 
to increase your approval chances.

figure 7.2 Interpretability can help explain algorithmic decisions 

to users.

Two drivers of this growth are particularly important. The 
first is that machine learning is being applied more broadly. 
This technology, which sometimes seems like "magic," will 
increasingly be applied in situations where failures can have 
disastrous consequences, such as systemic damage to the 
economy or even loss of life (see 6.2 Safety).

The second driver is that the most advanced and accurate 
approaches to machine learning are also the least interpreta-
ble. This is an inevitable consequence of the interpretability/
accuracy trade-off discussed in 2.6 Accuracy and Interpret-
ability. Competitive pressure will require more and more 
businesses to use these accurate black-box models, which 
will result in the more widespread use of model-agnostic in-
terpretability techniques.

7.1 Near Future
In the next one to two years, we expect to see approaches 

like LIME in increasingly wide use. In the short term, our pro-
totype could be applied to essentially any binary classifier of 
tabular data, and become a powerful internal tool. Indeed, the 
basic idea may become a commodity vendor machine learn-
ing technology (see 5.2 Data Science Platform).

With a little extra work, LIME’s output could be use to 
generate natural language explanations that can be shown 
to non-technical end users. For example, suppose a product 
recommender were able to give an explanation of its recom-
mendations that was both accessible and accurate. Then, a 
user dissatisfied with the recommendations could correct the 
model’s misunderstanding, perhaps by marking a piece of 
content as unliked.
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other than the owner of the model. Regulators will use these 
techniques to demonstrate discrimination in a model. Expla-
nations derived from LIME-like techniques will be used by 
courts to assign blame when a model fails.

Second, we expect current research into the formal com-
putational verifiability of neural networks to bear fruit. In 
this report we have focused on interpretability from a human 
point of view. It’s easier for a human to be satisfied that the 
behavior of an algorithm will be correct if they understand it. 
But in some safety-critical situations, human understanding 
is only tangentially related to verifiability, the construction of 
formal proofs that an algorithm will always behave in a cer-
tain way. Humans may never be able to reason confidently 
about the internals of neural networks, but work has begun 
on using fundamental ideas from computer science and logic 
to allow computers to answer with certainty questions such 
as "If this autopilot detects a plane on a collision course, will it 

figure 7.4 Regulators will be able to use model-agnostic inter-

pretability to inspect models.

Model-agnostic interpretability will also drive the in-
creasing popularity of automatic machine learning. Automat-
ic machine learning is when a parent algorithm configures 
and trains a model, with very little human involvement. This 
possibility is rather alarming to many experts, and precludes 
the possibility of offering explanations to users or regulators. 
This concern is alleviated if you are able to sanity check the 
model’s behavior using a system such as LIME, or if the au-
tomated process is constrained to use interpretable models 
such as those discussed in 3.2 White-box Models.

7.2 Longer Term
In the next three to five years, we expect three concrete 

developments. The first is the adversarial application of mod-
el-agnostic interpretability — that is, use of LIME by someone 

figure 7.3 Model-agnostic interpretability can provide a sanity 

check for models created through automatic machine learning.
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very small number of API calls. And a model that can be 
stolen can also be gamed — i.e., the input can be adjusted 
to get the desired output. The more uninterpretable the 
model, the less vulnerable it is to theft and gaming.

7.3 Interpretability Sci-Fi: The Definition of  
Success

 

1. Ship S-513: Hibernation Room

The crew awoke to Ship’s message:

"PLANET OF INTEREST APPROACHING — ESTIMATED ARRIVAL 

FOUR HOURS — BEGIN PREPARATION FOR ON-PLANET EXPLORATION."

Rue glanced at the monitor — they’d been out for seven months 

this time.

"Someday I’d like to know 

what exactly your definition 

of interesting is, Ship," Dar-

iux grumbled. "Sometimes 

it seems like interesting just 

means likely to get me killed."

"PREPARE FOR ON-PLANET 

EXPLORATION," Ship contin-

ued, giving no indication that 

it had heard or registered the 

complaint.

 

2. Planet I-274: Cave

Taera stood in the middle of hundreds of egg-like structures. They 

were each about a meter tall, with a covering that looked like a cross 

between leather and metal. They seemed to pulse slightly. A low hum-

figure 7.5 Woken from 

hibernation.

take evasive action?" This is computationally and theoretical-
ly challenging work, and it has a way to go before it is practical, 
and further still to satisfy regulators.1 But it will be integral to 
the wide-scale deployment of neural networks in safety-criti-
cal situations where verifiability is a requirement.

Finally, interpretability techniques will also fuel develop-
ment of machine learning theory. Theory is not an academic 
luxury. Without it, machine learning is trial and error. The 
very best deep learning models are not only uninterpretable 
individually, but we have very little theory about why or how 
they work as a class of algorithms. Interpretability has a role 
to play in making deep learning research less a case of trial 
and error and more a case of principled, hypothesis-driven 
experimentation. This is great news for machine learning 
and artificial intelligence.

The upside of uninterpretability
Truly uninterpretable models are black boxes, which 

leak as little information as possible to the end user. This 
can be a feature, rather than a bug. Opacity is useful in 
publicly accessible machine learning APIs. A linear mod-
el is fully specified by a number (or coefficient) for each of 
its input features. If a model is known or suspected to be 
linear, and can be asked to make predictions quickly and 
cheaply, then it can be stolen with a finite and perhaps 

1 For an introduction to this field, we recommend "Reluplex: An 

Efficient SMT Solver for Verifying Deep Neural Networks" (https://

arxiv.org/abs/1702.01135), and this informal two-part article: http://

bit.ly/2sDpoD1, http://bit.ly/2tOwXGW.
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had access to the control room and diagnostic information not avail-

able to the rest of the crew.

"Ship," she commanded, "explain the decision to explore this 

planet."

"PROBABILITY OF MISSION SUCCESS WAS ESTIMATED AT 95%."

"That’s just a number and we both know it, Ship. Show me the suc-

cess predictions for your last five missions."

A table was projected on 

the wall facing Rue. The mis-

sions had success predictions 

ranging from 98% to 13%.

"Show me the features go-

ing into these predictions."

"I UTILIZE THOUSANDS 

OF FEATURES, PROCESSED 

THROUGH COMPLEX NEU-

RAL NETWORKS. IT IS VERY 

TECHNICAL. HUMANS CANNOT 

UNDERSTAND."

"Apply the interpretability module, then, and show me the top fea-

tures contributing to the predictions."

Five columns were added. The most highlighted column was titled 

"Potential Profit."

"Show local interpretations for these features."

The cells in the columns shifted into red and blue highlights. For 

the profit column high profits were shown in a dark blue, indicating 

that this was the strongest contributing feature for the prediction of 

success. For the missions with lower success predictions, the profit 

values were much lower and highlighted in red, indicating that they 

were driving the success predictions lower for those missions.

figure 7.7 Mission success  

predictions
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ming suffused the cave.

"This one’s giving off signif-

icant heat," Taera said, as she 

approached the nearest one.

"Careful, Captain. I’m get-

ting a bad feeling here," Dariux 

called from the cave entrance.

The humming in the room 

cut out. The new, eerie silence 

was pierced by Taera’s scream. 

The structure she’d approached had broken open and a creature that 

looked like a cross between a stingray and a starfish had attached 

itself to the front of her helmet. Taera’s body stiffened and she fell 

straight back. Dariux and Giyana rushed to help.

 

3. Ship S-513: Entrance

Giyana and Dariux approached the ship’s doors, carrying Taera 

between them.

"I can’t let you bring her in," Rue said from the operations panel. 

"We don’t know what that thing attached to her is. It could contaminate 

the entire ship."

"Let us in!" Giyana demanded, "She’s still alive! We can help her!"

"I can’t — "

The doors opened. Ship had overridden Rue and let them in.

 

4. Ship S-513: Control Room

Four of the nine crew members were now dead, and two others 

weren’t responding. The aliens that had hatched from Taera’s body 

had taken over half of the ship.

Taera’s death meant Rue was now acting captain, and therefore 

figure 7.6 Taera in the cave.
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success. For the missions with lower success predictions, the profit 

values were much lower and highlighted in red, indicating that they 

were driving the success predictions lower for those missions.
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ming suffused the cave.

"This one’s giving off signif-

icant heat," Taera said, as she 

approached the nearest one.

"Careful, Captain. I’m get-

ting a bad feeling here," Dariux 

called from the cave entrance.

The humming in the room 

cut out. The new, eerie silence 

was pierced by Taera’s scream. 

The structure she’d approached had broken open and a creature that 

looked like a cross between a stingray and a starfish had attached 

itself to the front of her helmet. Taera’s body stiffened and she fell 

straight back. Dariux and Giyana rushed to help.

 

3. Ship S-513: Entrance

Giyana and Dariux approached the ship’s doors, carrying Taera 

between them.

"I can’t let you bring her in," Rue said from the operations panel. 

"We don’t know what that thing attached to her is. It could contaminate 

the entire ship."

"Let us in!" Giyana demanded, "She’s still alive! We can help her!"

"I can’t — "

The doors opened. Ship had overridden Rue and let them in.

 

4. Ship S-513: Control Room

Four of the nine crew members were now dead, and two others 

weren’t responding. The aliens that had hatched from Taera’s body 

had taken over half of the ship.

Taera’s death meant Rue was now acting captain, and therefore 

figure 7.6 Taera in the cave.
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to full power an alarm started, 

and Ship’s voice returned with 

a new sense of urgency. The 

adjusted feature importances 

and success prediction for the 

current mission appeared on 

the wall.

"ALERT! ALERT! CREW IS 

IN GRAVE DANGER. RECOM-

MENDATION: PROCEED TO 

ESCAPE POD IMMEDIATE-

LY. INITIATE SHIP SELF-DESTRUCT SEQUENCE TO DESTROY ALIEN 

CONTAMINATION."

"All right, Ship, good to have you on our side. Start the process," 

said Rue. "And download the data about your previous success model 

to my personal account."

 

5. Epilogue

Rue and the other surviving crew members made it home safely 

in the escape pod. The alien contamination was destroyed. Using the 

data on the previous model, Rue successfully sued Space Exploitation 

Corp. under the "Algorithms Hostile to Human Life" act. She won the 

case and received a large settlement for the crew and their beneficia-

ries. Space Exploitation Corp.'s reputation took a hit, but it continues 

to run the majority of space exploration missions.

figure 7.9 The recalculated suc-

cess prediction and a recom-

mendation for action.
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"Ship," Rue said thoughtfully, "probability of crew survival is a fea-

ture in your mission success prediction, isn’t it? Add that column to 

the table."

A column titled "Crew Survival" was added to the table. The values 

varied between 88% and 12%, and none of them were highlighted as 

important to the success prediction. The probability assigned to crew 

survival for the current mission was 14%.

"You were wrong, ship. I do understand. It’s not complicated at all." 

Rue said. "All of your decisions have been driven by this model, hav-

en’t they? This definition of mission success?"

"FEATURE SELECTION IS SET BY SPACE EXPLOITATION CORP. A SHIP 

CAN ONLY WORK WITH THE MODEL IT IS ASSIGNED."

"Yes, yes, I get it. Just following orders. Ship, we’re going to start a 

new model. Profits are not going to be a feature. Maximize the chanc-

es of crew survival."

"CALCULATING NEW MODEL. DECISION SYSTEM WILL NOW 

RESTART."

The lights dimmed briefly in the control room. As they returned 

figure 7.8 Feature importance for mission success predictions.
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chapter 8
Conclusion

Interpretability is a powerful and increasingly essential 
capability. A model you can interpret and understand is one 
you can more easily improve. It is also one you, regulators, 
and society can more easily trust to be safe and nondiscrim-
inatory. And an accurate model that is also interpretable can 
offer insights that can be used to change real-world outcomes 
for the better.

There is a central tension, however, between accuracy 
and interpretability: the most accurate models are neces-
sarily the hardest to understand. This report was about two 
recent breakthroughs that resolve this tension. New white-
box algorithms offer better performance while guaranteeing 
interpretability. Meanwhile, model-agnostic interpretability 
techniques such as LIME allow you to peer inside black-box 
models.

Our prototype makes these possibilities concrete. An ac-
curate model that predicts which customers your business is 
about to lose is useful. But it’s much more useful if you can 
also see why they are about to leave. In this way, you learn 
about weaknesses in your business, and can perhaps even in-
tervene to prevent the losses. The techniques demonstrated 
in this prototype point the way toward building tools that can 
inspect any black-box model to understand how it functions.
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94  Conclusion

The future is algorithmic. White-box models and tech-
niques for making black-box models interpretable offer a 
safer, more productive, and ultimately more collaborative 
relationship between humans and intelligent machines. We 
are just at the beginning of the conversation about interpret-
ability and will see the impact over the coming years.

 

About Fast Forward Labs

Fast Forward Labs is a research company that will help you 
recognize and develop new product and business opportuni-
ties through emerging technologies.

The July 2017 Fast Forward Labs report on Interpretabil-
ity is brought to you by Julius Adebayo, Grant Custer, Brian  
Goral, Micha Gorelick, Mike Lee Williams, Hilary Mason, 
Ryan Micallef, Manny Moss, Shioulin Sam, Friederike Schüür, 
and Danielle Thorp.

http://www.fastforwardlabs.com
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